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Abstract

In this report, we first have a review of the maximin space-filling design method
that is often applied and discussed in the literature (for example, Müller, 2007).
Then we discuss the robustness of the maximin space-filling design against
model misspecification via numerical simulation. For this purpose, we gener-
ated spatial data sets on a n × n grid, and design points were selected from
the n2 locations. The predictions at the unsampled locations were made based
on the observations at these design points. Then the mean of the squared
prediction errors were estimated as a measure of the robustness of the de-
signs against possible model misspecification. Surprisingly, according to the
simulation results, we find that the maximin space-filling designs may be ro-
bust against possible model misspecification in the sense that the mean of the
squared prediction error did not increase a notable amount when the model is
misspecified. Although the results were obtained based on simple models, this
result is very inspiring. It will guide further numerical and theoretical studies
that will be done as future work.

Key Words: Maximin space-filling designs, model misspecification, ro-
bustness, spatial data generation

1 Introduction

Space-filling designs are designs suitable for computational problems, which
allow us to simulate data and perform statistical tests on data as opposed to
using real data and performing repeated experimental testing. It imposes less
of a socioeconomic burden, as the data collection process can be expensive.
Further, the data collection process can be very time consuming, and hence
computer simulations are an efficient means of reaching the same end goal. In
the context of this problem, we simulate data and perform statistical tests to
determine whether the maximin space-filling design is robust against model
misspecification.
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Space-filling designs extend selected design points approximately evenly
throughout the given area. Space-filling designs can be difficult to establish
in practice, and thus, space-filling designs are generally useful in computer
simulations where we can ensure we have a nearly purely deterministic sys-
tem, as we will exemplify. There are several space-filling designs: U-optimal,
maximin, minimax and coffee-house to name but a few [2]. We will focus on
the maximin space-filling design. As the name suggests, maximin designs are
designs that push design points to the boundaries, contrary to minimax de-
signs in literature such as Pronzato (2017). That is, the design maximizes the
smallest distance between any two points in the region X using the standard
distance metric. We partition a given region into an n × n square such that
we have n2 cells.

1.1 Is maximin space-filling design robust against model
misspecification?

We will evaluate the robustness of the maximin space-filling design against
model misspecification via numerical methods. For that purpose, we will con-
sider two scenarios. The first scenario is that the model proposed by the
researcher is the correct model. The second scenario is that the researcher
proposed a model but it is only an approximation of the true model. Under
both scenarios, spatially correlated data sets from the correct models will be
generated on the n× n grid. We assume that the researcher will use the pro-
posed model to fit the data. However, as we know, the proposed model in
the second scenario is incorrect. In this case, the prediction must be biased.
We therefore simulate the mean of the squared prediction errors (MSPE), and
compare it with the value of MSPE obtained under the first scenario. If the
values of MSPE in both cases are close, we then conclude that based on the
simulation results, the maximin space-filling design is robust against the model
misspecification in the second scenario.

Under the first scenario, we assume the true model is

Y = β0 + xβ + ε(xh, xv) (1.1)

where β0 and β = (β1, ..., βp) are model parameters, x = (x1, ..., xp) ∈ Rp are
independent variables, and (xh, xv) is the coordinate of a grid point where xh
is the horizontal coordinate and xv is the vertical coordinate. Here {ε(xh, xv)}
is a Gaussian process with E(ε(xh, xv)) = 0, V ar(ε(xh, xv)) = σ2 and a co-
variance function

E[ε(x)ε(x′)] = c(x,x′). (1.2)
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We will choose the values of the model parameters and the covariance
function in the simulation. Suppose that the researcher fit the following model
after collecting data

Y = θ0 + xθ + ε(xh, xv) (1.3)

Assume that the researcher can get the correct correlation function (1.2).
Therefore, the researcher used the generalized least squares (GLS) estimators
to estimate the regression parameters and made predictions based on the GLS
estimates. We will simulate M data sets from model (1.1), each with size n2,
and then simulate the mean squared prediction error (MSPE)

E[Y − ŶGLS]
2

where ŶGLS is the predictor based on the GLS estimates.
Next, we consider the second scenario. Suppose that the researcher pro-

posed model (1.3) to fit the data. However, in this case, the true model (which
we will generate data from) is

Y = θ0 + xθ + ψ(x) + ε(xh, xv) (1.4)

where ψ(x) is a small deviation between the true model and the proposed
model (1.3).

Assume that the researcher didn’t realize the model misspecification and
still used model (1.3) to fit the collected data, but they can obtain the correct
correlation function (1.2). Therefore, the researcher still used the generalized
least squares estimators to estimate the regression parameters and made pre-
dictions based on the GLS estimates. We simulate M data sets from model
(1.4), each with size n2, and then simulate the mean squared prediction error
E[Y −ŶGLS]

2 where ŶGLS is the predictor based on the GLS estimates of model
(1.3).

In Section 2, we will briefly introduce how to generate spatially correlated
data by applying the Markov chain Monte Carlo algorithm, and then we will
simulate the mean squared prediction errors for different values of n in Section
3.

2 Generating Spatial Data Sets

Markov chain Monte Carlo (MCMC) is known as one of the ”ten most impor-
tant algorithms” of the 20th century [4]. The goal of MCMC is to simulate
a random variable X whose distribution is the target distribution π. Two
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algorithms are often used: Metropolis-Hastings algorithm and Gibbs sampler.
We will apply the Gibbs sampler to generate spatial data sets.

We are going to simulate spatial datasets based on models such as Model
(1.1) or Model (1.4) on a grid. The datasets include the independent variables
xh and xv as described above, x = (x1, ..., xp), and the dependent variable (Y ).
Since the deterministic part of an observation can be easily calculated once the
model parameters are determined, we only need to simulate the random error
variables, which are assumed to be correlated Gaussian. To apply the Gibbs
sampler to generate the Gaussian process x = (xh, xv), we need to find the
conditional distribution (i.e., the conditional mean and conditional variance
since the process is Gaussian) of ε(x) given all the other ε(x′) for x ̸= x′.

We denote the covariance matrix as Σ and its jth row as Σj.. Moreover, by
deleting the jth row and the jth column of Σ we obtain a submatrix denoted
as Σ−j,−j. Let ε = (ε(x1), ..., ε(x100)). By deleting the jth entry of the vector
ε we obtain ε−j. Then the conditional mean and conditional variance of ε(xj)
(conditional on ε−j) are

Σj.Σ
−1
−j,−jε−j

and
1− Σj.Σ

−1
−j,−jΣ

T
j.

separately. We then find the conditional means and variances for all the entries
in ε.

The R code used to generate the datasets was modified based on Chyzh
[1]. We assume that V ar(ε(xh, xv)) = 1 and the covariance function is

E[ε(x)ε(x′)] = c(x,x′)

for any two points x = (xh, xv) and x′ = (x′h, x
′
v).

3 Simulate the Mean of Squared Prediction

Errors

As a special example of model (1.1), we consider the following model

Y = 1 + 2x1 + 1.5x2 + ε(xh, xv) (3.1)

.
For the specified model, β0 = 1, β1 = 2, β2 = 1.5 We generate the points

on a grid and calculate the distance between any two given points and define
the covariance function as

Cov(y1, y2) =
1

1 + d
(3.2)
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where d is the spatial distance between y1 and y2. In general, the distance
between two points x and y is d(x, y) = ((x1−x2)2+(y1−y2)2)1/4, where x1, x2
are on the horizontal coordinate xh and y1, y2 are on the vertical coordinate xv.
By applying the simulation method described in Section 2, M = 500 datasets
were generated. The next step is to obtain a maximin design on the 10 × 10
grid. An R package Maximin was developed by (Sun) 2021. We applied this
package, and the R code is available in the Appendix.

With the maximin space-filling design obtained, a sample with sample
size n = 10 will be chosen from each generated dataset. We then found the
generalized linear estimates for the model parameters of Model (1.3) based on
the samples, and then made predictions ŶGLS at the grid points that were not
chosen. We then compute (y − ŷGLS)

2 for all 500 samples and the average
of the squared differences. For this simulation, an average MSPE of 83.48097
was obtained.

This process was repeated for grids with sizes n2 = 25 and n2 = 400 which
yielded average MSPEs 1.94135 and 464.8311, respectively. The results are
summarized in the table below:

Grid Size Average MSPE
n2 = 25 1.94135
n2 = 100 83.48097
n2 = 400 464.8311

Table 1: The average MSPE for Different Sample Sizes for Model 5

As we can see, the average MSPE increases as the sample size increases,
which is what we would expect. Now we want to move on to our second
scenario, our misspecified model (1.4), to determine whether the space-filling
design is robust against model misspecification.

As a special case of model (1.4), we consider the model below to be the
true model

Y = 1 + 2x1 + 1.5x2 + 0.01x21 + 0.003x22 + ε(xh, xv) (3.3)

Like before, we start by considering a grid size of n2 = 100 and use the
R package Maximin to construct a space-filling design, which is exactly the
same as we constructed for model (3.1) with the same grid size.

We then generated datasets based on model (3.3). Once we have all the
points generated on a grid, we calculate the distance between any two points
and define our covariance function as before in (3.2). We then apply the Gibbs
sampler as before to find the conditional distribution to generate the Gaussian
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process. Similar to what was done for model (3.1), 500 samples were selected
from the generated datasets according to the maximin space-filling design.
GLS estimates of the model parameters were obtained and predictions were
made at the grid points that were not selected.

We then computed (y − ŷGLS)
2 the same as before for all of the datasets

and then computed the average. For this simulation, an average MSPE of
83.32013 was calculated.

In a similar fashion, we repeated this process for grid sizes n2 = 25 and
n2 = 400 to obtain average MSPEs 1.91884 and 462.1736, respectively.

Grid Size Average MSPE
n2 = 25 1.91884
n2 = 100 83.32013
n2 = 400 462.1736

Table 2: The average MSPE for Different Sample Sizes for Model 6

Similar to what we saw in our first scenario, we see a steady increase in the
average MSPE as the sample size increases. Let us now compare the results
from our two scenarios.

Grid Size Average MSPE Model 5 Average MSPE Model 6 Difference
n2 = 25 1.94135 1.91884 0.02251
n2 = 100 83.48097 83.32013 0.16084
n2 = 400 464.8311 462.1736 2.6575

Table 3: Comparing the Results from Scenario 1 and Scenario 2

For a grid size of n2 = 25, we have a positive difference of 0.02251 indicating
that the MSPE values are similar. There is no increase of the MSPE when the
model is misspecified. For n = 100, we have a difference of 0.16084 which again
indicates that the MSPE doesn’t increase for the misspecified model. Finally,
when n = 400 was considered, we see very similar MSPE values, which again
shows that slight model misspecification does not have an effect on the MSPE.

4 Summary

In this work, we generated spatial data under two scenarios. The first scenario
is based on Model (1.1) and the second scenario based on Model (1.4). We
then simulated the mean of squared prediction errors under both scenarios and
varied the grid sizes. We saw that the second scenario which considered the
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misspecified model yielded similar MSPE values compared to that of the first
scenario. Although this simulation is simple, it shows a very inspiring result.
That is, the maximin space-filling design might be robust against model mis-
specification in the sense that the MSPE values do not change remarkably even
when the model is misspecified. To further verify this result, more numerical
simulations will be needed, and we will try to prove the result theoretically as
future work.
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