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Abstract

Korteweg de Vries (KdV) model is considered quintessential in modeling the surface gravity
water waves in shallow water. In this project, we are interested in starting from the Elliptic
Jacobian Functions, [4], and performing a complete analysis of these functions to discover that
one can recover the soliton in the particular case m −→ 1, where m is a parameter between
0 and 1 in the definition of the Elliptic Jacobian Functions. This analysis will provide us with
an understanding of cnoidal periodic waves and how, through them, we can derive the soliton
solution. Finally, this project grants readers a deeper understanding of the origin of solitons
and their applications in water wave theory.

Keywords: KdV, water waves, cnoidal waves, periodic waves, nonlinear waves, solitons.

1 Introduction to Solitons and Water Wave Theory

In September 1844, in York, England, John Scott Russel reported to the British Association of the
Advancement of Science, the discovery of a novel class of wave which the writer has called “the
great wave of translation”, [10]. He described it as a wave consisting of a single elevation, which,
if properly started, may travel for a considerable distance along a uniform channel, with little or no
change. In the fluid dynamics literature, Russell’s wave is referred to as Russell’s solitary wave.

The solitary wave has the following characteristics

• It is a long, shallow wave of permanent form, i.e., its amplitude (a) is small compared to its
wavelength (λ) : a

λ << 1.

• The speed of propagation, c, is given by

c2 = g(h+ a) (1)

where g is the gravitational acceleration, and h is the constant depth of a long and narrow
channel. The equation (1) tells us that higher solitary waves travel faster.

Figure 1 shows a solitary wave subject to gravitational acceleration g in a channel of uniform depth
h. The speed of the solitary wave is given by (1).

At the time, Russell’s observations came in conflict with Airy’s wave theory developed in 1841,
which predicted that a small amplitude wave cannot propagate without change of profile when it
propagates in constant finite depth. The article “The Origins of Water Wave Theory”, [3], gives the
insight on how Airy viewed Russel’s report from 1844.
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Boussinesq, in 1871, and Lord Rayleigh, in 1876, explained Russel’s findings. The article ”On
the solitary wave”, [6], gives the insight on the supportive theory Boussinesq and Lord Rayleigh
developed separately to explain Russell’s solitary wave. Both Boussinesq and Lord Rayleigh,
developed the supportive theory for Russell’s findings using the equations of motion for an ideal
fluid, i.e., incompressible and inviscid. As well, they assumed that Russell’s solitary wave is a class
of wave with a wavelength (λ0), much greater than the depth of water (h), i.e.,

δ2 :=

(
h

λ0

)2

= O(ε), ε << 1 (2)

where δ2 is called the square of the frequency dispersion parameter.
Boussinesq, [2], showed that appropriate allowance for the vertical acceleration, which is re-

sponsible for dispersion and is neglected in Airy’s wave theory, and appropriate allowance for the
finite amplitude, leads to the following solution for the profile z = η(x, t) of the free surface (i.e.,
undisturbed level) elevation

η(x, t) = a sech2(β(x− ct)), β2 =
1

λ0
2 =

3a

4h2(h+ a)
(3)

for any a > 0.
He discovered as well that the profile (3) is correct only if (2) is satisfied.

(a) (b) (c)

Figure 1: The time evolution of Russell’s solitary wave as explained by Boussinesq for c = 5,
g = 9.8, and h = 2.

Note: The profile of the solitary wave is shown from the free surface elevation, i.e., Boussi-
nesq’s solution was raised by the depth, h, of the channel.

Lord Rayleigh, [9], treated the problem as one of steady motion (i.e., time independent), and
he derived the following ordinary differential equation (ODE)(

dy

dx

)2

= 3
(y − h)2

h2

(
1− gy

c2

)
(4)

The ODE (4) governs long one-dimensional, small amplitude, surface gravity waves in a channel of
water of uniform depth h, where c is the uniform velocity in the parts of the fluid at a distance from
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the wave, whether in front or behind it. From the ODE (4) we can immediately see that the only
elevations in the solution curves of the equation, when the tangents to the curves are horizontal,
happen at the free surface, i.e., y = h, or when y = c2

g . Since 1 − gy
c2

is non-negative, we obtain
that the maximum elevation of any solution curve of the ODE (4) where the tangent is horizontal,
is ymax = c2

g , and consequently we have no depression (i.e., underneath the free surface) in the
profile of the wave. Therefore, the wave is necessarily of one elevation only. Denoting by a the
maximum height above the free surface, we get

c2 = gymax = g(h+ a) (5)

which represents (1).

(a) (b) (c)

Figure 2: Russell’s solitary wave as explained by Lord Rayleigh for c = 5, g = 9.8, and h = 2.

Lord Rayleigh’s solution takes in account the depth, h, of the channel. The value of the constant
of integration obtained by solving the ODE (4) shifts horizontally the solitary wave profile as it would
propagate with respect to time.

Concluding remark on the works of Boussinesq and Lord Rayleigh regarding Russell’s
solitary wave

Distinct from Lord Rayleigh’s article, Boussinesq introduces a time variable, essential for the
description of a dynamic phenomenon. Hence, Boussinesq’s work is more comprehensive in
describing Russell’s solitary wave, as he used a complex evolution partial differential equation
(PDE) to derive the profile of Russell’s solitary wave (3). As well, Boussinesq’s work reveals
something unique about the nature of Russell’s solitary wave. Using the Ursell number, U , which
is a dimensionless parameter used in fluid dynamics to measure the nonlinearity of long surface
gravity waves, we obtain

U =
aλ0

2

h3
=

a
h(
h
λ0

)2 =
a
h

δ2
=

O(ε)

O(ε)
= O(1) (6)

The relationship (6) tells us that the solitary waves have the essential quality of balance between
nonlinearity (measured by a/h) and dispersion (measured by δ2 = (h/λ0)

2).
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2 Korteweg-de Vries Equation

In 1895, Korteweg and de Vries, who apprently did not know of the work of Boussinesq and Lord
Rayleigh, derived a nonlinear evolution partial differential equation, known as the Korteweg-de
Vries (KdV) equation, governing long one dimensional, small-amplitude, surface gravity waves
propagating in shallow water of uniform depth.
The KdV equation in the dimensional form can be represented through the following PDE:

ηt +
3

2
c0(

1

h
ηηx +

2

3
αηx +

1

3
σηxxx) = 0 (7)

where σ = 1
3h

2 − T
ρg , and c0 =

√
gh.

Explanations of the symbols in the KdV model (7)

• η represents the surface elevation of the wave about the equilibrium level h.

• α represents the small arbitrary constant related to the uniform motion of the liquid

• g represents the gravitational constant

• σ is the parameter depending on the surface tension T of the liquid of constant density ρ

• c0 represents the wave velocity

Remark c0 represents the wave velocity only in the first order approximation, where a/h may be
neglected. In the case when a/h cannot be neglected, it is impossible to have a wave in still water
with velocity

√
gh, and at the same time propagating without change of form. Hence, in order

to account for this discrepancy, a more accurate approximation of the wave velocity is used in
nonlinear water wave theory.
In the first section we mentioned that Boussinesq, in his comprehensive work, used a complex
evolution PDE to derive the profile of Russell’s solitary wave (3).
The Boussinesq equation is

ηtt = c20(ηxx +
3

2h
(η2)xx +

1

3
h2ηxxxx) (8)

where c0 =
√
gh

Boussinesq equation (8) describes one-dimensional weakly nonlinear dispersive water waves
propagating in both directions in water of uniform depth h. A derivation of the KdV equation
out of the Boussinesq equation was presented in [11], and is based on the Riemann invariants
method applied by Zabusky and Kruskal, [12].

2.1 Periodic Solutions discovered by Korteweg and de Vries: The Cnoidal Waves

Before we start, let us note the Jacobian elliptic functions cn and sn, defined as follows, [8]

sn(v|m) = sinϕ and cn(v|m) = cosϕ (9)
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where v and ϕ are related by the integral

v =

∫ ϕ

0

dθ√
1−m sin2 θ

, m ∈ [0, 1]

Russel’s solitary wave is recovered from the cnoidal waves in the special case m −→ 1.
Both the periodic and the solitary waves described by the KdV model (7) are found as solutions of
constant shape moving with constant velocity (v). Thus, we can describe them as a special type
of travelling waves as follows:

η(x, t) = hu(x− vt) (10)

We obtain partial derivatives of the function η(x, t) as follows

ηt = h(−v)u′

ηx = hu′, ηxx = hu′′, ηxxx = hu′′′
(11)

Remark Note that in (11), u′ stands for du
d(x−vt) , such that we have, for instance, du

dt = (−v)u′.

Then the KdV model (7) becomes

hu′(−v) +
3

2
c0(

1

h
hu · hu′ + 2

3
αhu′ +

1

3
σhu′′′) = 0 =⇒

−hvu′ +
3

2
c0h(uu

′ +
2

3
αu′ +

1

3
σu′′′) = 0 =⇒

−2

3

v

c0
u′ + uu′ +

2

3
αu′ +

1

3
σu′′′ = 0

(12)

Let us recall from the equation (7), σ = 1
3h

2 − T
ρg . Neglecting the tension T , we get σ = 1

3h
2. Then

the equation (12) becomes

h2

9
u′′′ +

2

3
(α− v

c0
)u′ + uu′ = 0 (13)

Integrating equation (13) once, we obtain

h2

9
u′′ +

2

3
(α− v

c0
)u+

u2

2
+ C1 = 0 (14)

where ∫
uu′ =

∫ (
u2

2

)′
=

u2

2
+ C1.

Multiplying equation (14) by u′, we obtain the following

h2

9
u′′u′ +

2

3
(α− v

c0
)uu′ +

u2u′

2
+ C1u

′ = 0 (15)
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Integrating equation (15) once more, we obtain

h2

9

(u′)2

2
+

2

3
(α− v

c0
)
u2

2
+

1

2

u3

3
+ C1u+ C2 = 0 =⇒

h2

3
(u′)2 + 2(α− v

c0
)u2 + u3 + 6C1u+ C2 = 0 =⇒

h2

3
(u′)2 = −u3 − 2(α− v

c0
)u2 − 6C1u− C2 = 0 =⇒

h2

3
(u′)2 = −u3 + 2(

v

c0
− α)u2 + 6C1u+ C2

(16)

where ∫
u′′u′ =

∫ (
(u′)2

2

)′
=

(u′)2

2
+ C2.

Let us notice that the right hand side of the equation (16) is a polynomial of degree 3, and let us
denote it by P (u). Then the equation (16) becomes

h2

3
(u′)2 = P (u) (17)

Since we look for real bounded solutions only, we are interested in the area where P (u) ≥ 0.
Looking at the degree of polynomial P (u), we notice that P (u) will either have one real root or
three real roots. In this work, we will be interested in the case when P (u) will have three distinct
real roots, u1, u2, and u3. Without loss of generality let us assume u1 < u2 < u3. Then we will
have

P (u) = −(u− u1)(u− u2)(u− u3).

Then the ODE (17) becomes

h2

3
(u′)2 = −(u− u1)(u− u2)(u− u3) =⇒

h2

3
(u′)2 = (u1 − u)(u− u2)(u− u3) =⇒√
1

3
hu′ = ±

√
(u1 − u)(u− u2)(u− u3)

(18)

Rewriting u′ as u′ = du
d(x−vt) , from (18) we obtain√

1

3
h

du√
(u1 − u)(u− u2)(u− u3)

= ±d(x− vt) (19)

Integrating (19), we obtain

±(x− vt) =

∫ u

u3

√
1

3
h

dw√
(u1 − w)(w − u2)(w − u3)

± u3

x− vt = u3 ±
√

1

3
h

∫ u

u3

dw√
(u1 − w)(w − u2)(w − u3)

(20)
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Performing the substitution, χ = x− vt, the equation (20) becomes

χ = u3 ±
√

h

3

∫ u

u3

dw√
(u1 − w)(w − u2)(w − u3)

(21)

Let us make the following substitution

w = u3 + (u2 − u3) sin
2 θ (22)

Then we have
dw = (u2 − u3)2 sin θ cos θdθ (23)

The new limits of integration of the integral in (21), in terms of the substitution (22), are

u = u3 + (u2 − u3) sin
2 θ =⇒ θ = ϕ

and
u3 = u3 + (u2 − u3) sin

2 θ =⇒ sin2 θ = 0 =⇒ θ = 0

Then we have,∫ u

u3

dw√
(u1 − w)(w − u2)(w − u3)

=∫ ϕ

0

(u2 − u3)2 sin θ cos θdθ√
(u1 − u3 + (u3 − u2) sin

2 θ)(u3 − u2 + (u2 − u3) sin
2 θ)(u2 − u3) sin2 θ

=∫ ϕ

0

−2dθ√
(u3 − u1)(1− u3−u2

u3−u1
sin2 θ)

=

∫ ϕ

0

−2dθ√
(u3 − u1)(1−m sin2 θ)

(24)

Where we denote m = u3−u2
u3−u1

, m ∈ (0, 1).
Hence we have,

χ = u3 ±
h√
3

∫ ϕ

0

−2dθ√
(u3 − u1)(1−m sin2 θ)

=⇒

∓ (χ− u3)

√
3(u3 − u1)

2h
=

∫ ϕ

0

dθ√
1−m sin2 θ

(25)

The equation (25) is nothing else but a cn even function for v = (χ − u3)

√
3(u3−u1)

2h , as defined in
(9). Hence, we can write it as

cn

[
(χ− u3)

√
3(u3 − u1)

2h
| m

]
= cos θ (26)

7



From the substitution that was preformed above we have

u = u3 + (u2 − u3) sin
2 ϕ

= u2 + (u3 − u2) cos
2 ϕ

= u2 + (u3 − u2)cn
2

[
(x− u3)

√
3(u3 − u1)

2h
| m

] (27)

We have η(x, t) = hu(χ) = hu(x− vt), then the equation (27) becomes

η(x, t) = h

[
u2 + (u3 − u2)cn

2

[√
3(u3 − u1)

2h
(x− vt− u3) | m

]]
(28)

The formula above is called the cnoidal-wave solution of the KdV model (7). In the limit case

(a) (b) (c)

Figure 3: The time evolution of a periodic cnoidal wave for the KdV model (7), following the formula
(28) for h = 1, u3 = 1, u2 = 0.1, u1 = 0.01, and v = 0.1.

m −→ 1 (i.e., u2 −→ u1), we have cn −→ sech, and the Russell’s solitary wave is recovered.

η(x, t) = h

[
u1 + (u3 − u1) sech

2

[√
3(u3 − u1)

2h
(x− vt− u3)

]]
(29)
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(a) (b) (c)

Figure 4: The time evolution of a solitary wave for the KdV model (1), following the formula (29) for
h = 1, u3 = 1, u2 = u1 = 0.01, and v = 0.1.

3 Summary and Discussions

In this paper we introduced the Korteweg-de Vries equation, which was derived as a model for
long wave propagation in shallow water, and it is a great example for explaining the propagation
of weakly dispersive and weakly nonlinear waves. In recent years, KdV equation has been used
as a model for a variety of phsyical phenomena, ranging from plasma and solid state physics to
biology, since it requires only a few general assumptions about the structure of nonlinearity, and
dispersion to be made [7].
The first part of this paper mainly focuses on the core ideas regarding the nature of the solitary
waves, starting with experiments of John Scott Russell in 1834, followed by theoretical investi-
gations of Boussinesq in 1871 and Lord Rayleigh in 1876, and finally, Korteweg and de Vries in
1895. In the later part of this paper we derived the nonlinear and exact periodic wave solution of
the Korteweg–de Vries equation, known as the cnoidal waves. These solutions are given in terms
of the Jacobi elliptic function cn, and are used to describe surface gravity waves in shallow water.
Finally, the solitary wave solution, i.e., the soliton, is recovered from the cnoidal wave in the limiting
case m −→ 1, when cn −→ sech. The method for solving the KdV equation presented in this pa-
per is heavily based on the original work of Korteweg and de Vries dating back to 1895. However,
the modern theory of soliton was actually developed much later in 1967, when Gardner, Greene,
Kruskal and Miura related KdV equation to the inverse scattering problem for a one-dimensional
linear Schrödinger equation. It is worth noting that Mark Ablowitz, in his book Nonlinear Disper-
sive Waves, [1], gives a comprehensive explanation of the inverse scattering problem for the KdV
equation.
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