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Abstract

In this paper, two generating function representations of the Fibonacci Substitution Tiling
are derived and proven to converge on the interval ´1 ă x ă 1. A sequence of signs for the
Fibonacci Substitution is established along with a conjecture that the interval of convergence
has an infinite number of zeroes.

1 Introduction

In his 1202 book Liber Abaci, Fibonacci discusses the "Problem of the Rabbits" [4][9]. This rabbit
problem seeks to determine the number of offspring that can be produced in one year, beginning
with one pair of baby rabbits of opposite sex. As Grimaldi [9, Chapter 2] notes, the problem has
the following initial conditions:

1. all baby rabbits mature to adulthood in 2 months, then reproduce at the start of each new
month

2. every pair of baby rabbits consists of one male and one female

3. no rabbits die throughout the year

For instance, in March the initial pair of rabbits are adults and reproduce, giving one pair of
baby rabbits. Then in April, the initial pair has another pair of baby rabbits and the baby rabbits
from the month prior become adults, giving two pairs of adult rabbits and one pair of baby rabbits.
Throughout this process, Fibonacci found that the number of baby, adult and total number of
rabbits each followed the same sequence of numbers {0, 1, 1, 2, 3, 5, 8, 13, 21, . . . } [9]. He
also demonstrated that each number in this sequence was the sum of its two previous numbers
[4]. As a result, these numbers became known as the Fibonacci numbers and their sequence the
Fibonacci sequence.

The use of the Fibonacci sequence is one way to solve the rabbits problem; however, the
problem can also be found through a substitution rule. As has been established, adult rabbits
reproduce, leaving an adult and a baby pair; baby pairs of rabbits grow up to become adult rabbits.
Thus the substitution rule becomes,

σ : a Ñ ab

b Ñ a

where a represents the adult rabbits and b represents the baby rabbits. Through repeated con-
catenations of this rule, a subword with the total amount of adult and baby rabbits is derived. We
know from the example above that March has one pair of adult rabbits who give birth to one pair
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of baby rabbits. Thus, the subword for March is ab. In April, the initial adult pair has another set of
babies and the previous month’s babies grow up, making the subword aba. By using this substi-
tution rule, the rabbits problem is being solved via a substitution tiling; specifically, the one-sided
Fibonacci Substitution tiling [1][7].

The implications of this Fibonacci Substitution can be demonstrated through a real-life example
of the rabbits problem. In 1859, an English farmer named Thomas Austin imported 12 breeding
pairs of rabbits into Australia, letting them loose to "naturalize" to the environment [5]. Within 70
years, 70 percent of the Australian continent was overrun with rabbits [18]: in 1948 alone, 130
million rabbits were killed in an attempt to control the massive population size [5]. Despite modern
control measures, there are still an estimated 200 million feral rabbits in Australia today, showing
the infinite concatenation process found in the Fibonacci Substitution [14].

The focus of this paper is on the one-sided Fibonacci Substitution. We begin in section 2 by
briefly reviewing the Fibonacci numbers, substitution tilings, the Fibonacci Substitution and gener-
ating functions. In section 3 we use two generating functions to encode the Fibonacci Substitution
and derive each of their recurrence relation formulas. Properties for these generating functions
such as the interval of convergence are shown and proven. We complete the paper in section 4
by showing the existence of a sequence of signs recurrence relation for the generating functions,
that the Fibonacci Substitution arises in this recurrence and by posing the conjecture that there
are an infinite amount of zeroes in the interval p´1, 1q.

2 Preliminaries

In this section, we briefly review Fibonacci numbers, the one-sided Fibonacci Substitution and
generating functions.

Fibonacci Numbers are the terms in the sequence t0, 1, 1, 2, 3, 5, 8, . . .u where each term is the
sum of the two previous terms, starting with f0 “ 0 and f1 “ 1 (see for example [10, 6]). This
process of repeatedly adding the two previous terms gives the Fibonacci numbers as the following
linear recurrence relation,

Definition 2.1 (Fibonacci Numbers). Let f0 “ 0 and f1 “ 1. Then the Fibonacci Numbers are
defined recursively as,

fn`1 “ fn ` fn´1

Next we describe the notion of substitution tilings, focusing mainly on the one-sided Fibonacci
Substitution. For a general introduction to other substitution tilings we recommend [1][8].
A substitution tiling is a rule that uses a finite number of tiles to construct an infinite tiling of the
Euclidean Space Rd through repeated substitutions [7]. In the ‘cut and project’ method the tiles
are typically represented by different shapes or lines. This geometric representation of tilings is
useful in modelling physical quasi-crystalline materials as certain sequences are highly ordered
and aperiodic, which is similar to the structures of these quasi-crystals [2][12][16][13]. Thus the
point-sets provided from these tilings can provide interesting diffraction and symmetry properties
on quasi-crystals [13].

In combinatorial representations, tiles are often represented by letters that are repeatedly con-
catenated to create finite subwords [13]. The Fibonacci Substitution is one instance of a substitu-
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tion tiling that can be viewed this way. The Fibonacci Substitution is an aperiodic substitution tiling
that has the letters ‘a’ and ‘b’ as its tiles [2]. Its inflation rule is as follows,

Definition 2.2 (The Fibonacci Substitution Inflation Rule). [1, Example 4.6] The one-sided Fi-
bonacci Substitution abides by the following inflation rule:

σ : a Ñ ab

b Ñ a

where a and b are the tiles in the substitution.

This inflation rule repeatedly concatenates the string of letters, providing a finite subword for
each iteration. Similar to the Fibonacci Numbers (Definition 2.1), each iteration’s string of letters is
composed of the subwords from the previous two iterations, giving the Fibonacci Substitution the
following recursive definition:

Definition 2.3 (The Recursive Fibonacci Substitution). [17] Let Fn represent the nth iteration in
the Fibonacci Substitution. Let F0 “ b and F1 “ a. Then for n ě 2 the Fibonacci Substitution is
defined recursively by concatenation as,

Fn`1 “ FnFn´1

By using Definition 2.3, the first 8 finite subwords of the Fibonacci Substitution are,

F0 “ b

F1 “ a

F2 “ ab

F3 “ aba

F4 “ abaab

F5 “ abaababa

F6 “ abaababaabaab

F7 “ abaababaabaababaababa

where the pink shows the newly appended section.
In the examples of Fn above, we see that there are never two ‘b’ tiles in a row. Below it will be

shown that Fn always contains this property.

Proposition 2.4. Fn never has two successive b tiles.

Proof of Proposition 2.4. First observe that F0 “ b and F1 “ a do not have two successive ‘b’ tiles.
For n ě 2, assume that Fm does not have two consecutive ‘b’ tiles for every 1 ď m ď n. Now,
Fn`1 “ FnFn´1 and the appended Fn´1 must begin with an ‘a’ value due to Definition 2.2 and
since n ´ 1 ě 1. Due to this occurrence, there can not be two successive ‘b’ tiles where Fn

and Fn´1 join together regardless if Fn ends in either an ‘a’ or a ‘b’. Within Fn and Fn´1 no two
consecutive ‘b’ tiles can occur by hypothesis. Therefore, no two consecutive ‘b’ tiles can occur in
Fn`1. By induction the result follows. ■
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By using Definition 2.3, it is easy to see that Fn never ends in aa. Then, similarly to Proposition
2.4 we can prove that,

Proposition 2.5. There can not be three successive ‘a’ values in any Fn.

By using Definition 2.3, the subsequent well known result immediately follows,

Proposition 2.6. Each |Fn| has fn ‘a’ values, fn´1 ‘b’ values and fn`1 total terms.

As the iterations occur, the subwords of Fn become quite large and hard to work with; however,
there are different ways to represent the iterations so that they are not large strings of letters. One
such way is with generating functions, which we will review next.

A generating function converts an infinite sequence into a function that can be manipulated in
ways that could not be done with the original sequence, allowing new information to be gained
on the sequence [11]. The functions that these sequences are transformed into are real-valued
functions, which are dealt with more commonly than abstract sequences and thus have many
mathematical tools at their use for their analysis. In discrete mathematics, this conversion from
abstract into real through generating functions allows use of these real-valued math tools on ab-
stract sequences. There are many types of generating functions, but we will focus on Ordinary
Generating Functions.

Definition 2.7 (Ordinary Generating Functions). [3, Page 269]
Suppose we have a sequence ta0, a1, a2, a3, . . .u. The ordinary generating function (OGF)
associated with this sequence is the function whose value at x is

ř8
n“0 anx

n. The sequence
ta0, a1, a2, a3, . . .u is called the coefficients of the generating function.

While the generating function is called a function, it does not output the nth term in an infinite
sequence but instead a function whose power series displays the terms of the sequence as shown
below [11][19]:

8
ÿ

n“0

anx
n “ a0 ` a1x ` a2x

2 ` a3x
3 ` . . .

An expanded generating function is one representation of a sequence, which in rare cases can
be used to find a closed form representation of the sequence that has a finite number of terms.
For instance, the sequence t1, 1, 1, 1, . . .u has the form,

8
ÿ

n“0

xn “ x0 ` x1 ` x2 ` x3 ` . . . “
1

1 ´ x

where 1
1´x is the closed form representation of the sequence. The Fibonacci Numbers also have

a closed form equation. To find this form, we first look at the expanded generating function,

8
ÿ

n“0

fnx
n “ 0x0 ` 1x1 ` 1x2 ` 2x3 ` . . . “

1

1 ´ x ´ x2
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These functions can then be used to deduce the closed form representation Binet’s Formula:

fn “
1

?
5

rφn ´ p´φ´nqs

where φ is the golden ratio 1`
?
5

2 and 1
´φ is the golden root conjugate 1´

?
5

2 [1][15][19].
In this paper, we will focus on the expanded generating functions related to the Fibonacci

Substitution as opposed to closed form representations of the sequence. Throughout the paper,
we let f1 “ 1 be the first term in the Fibonacci Sequence and F1 “ a be the first iteration of the
Fibonacci Substitution.

3 Fibonacci Generating Functions

As stated previously, we can look at the generating functions related to the Fibonacci Substitution
in multiple ways. We will focus on the one-sided substitutions in two ways, starting with each of
their expanded representations.

3.1 Exponents Represent the Positions

Let the exponents represent the positions of the ‘a’ values in the subwords of the Fibonacci Sub-
stitution. By converting the ‘a’ and ‘b’ letters into 1’s and 0’s, a sequence of binary digits is created.

Definition 3.1. Let ak be the position of the kth ‘a’ value in limnÑ8 Fn. Then ak is defined as,

ak “

#

1 if the kth letter is ‘a’
0 if the kth letter is ‘b’

Through the use of Definition 3.1, the ‘a’ tiles in the iterations of Fn can be separated from the
‘b’ tiles. By taking the summation of the ‘a’ tiles’ coefficients, the exponent generating function of
the ‘a’ tiles can be found for each Fn iteration.

Definition 3.2. Let ‘An’ represent the exponent generating function that corresponds to Fn. Then

Anpxq “

fn`1
ÿ

k“1

akx
k

are the partial sums for the generating function Apxq “
ř8

k“1 akx
k.

Due to this definition the degrees of the x values in the generating functions represent the
positions of the a tiles in the Fibonacci Substitution and each coefficient has a value of 1. The first
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8 iterations of Anpxq are shown below:

A0 “ 0

A1 “ x1

A2 “ x1

A3 “ x1 ` x3

A4 “ x1 ` x3 ` x4

A5 “ x1 ` x3 ` x4 ` x6 ` x8

A6 “ x1 ` x3 ` x4 ` x6 ` x8 ` x9 ` x11 ` x12

A7 “ x1 ` x3 ` x4 ` x6 ` x8 ` x9 ` x11 ` x12 ` x14 ` x16 ` x17 ` x19 ` x21

Notice that in A1 there is f1 “ 1 term, in A2 there is f2 “ 1 term and in A3 there are f3 “ 2
terms. This process continues on so that at An there are fn values in the polynomial. Between A1

and A3 each F1 term is multiplied by xf2 , between A2 and A4 each F2 term is multiplied by xf4 and
so on so that between step An´1 and An`1 each term in An´1 is multiplied by xfn`1 . Thus, Anpxq

can be generalized to the following,

Proposition 3.3. Exponent Generating Function of the ‘a’ Tiles For n ě 2,

An`1 “ An ` pAn´1qxfn`1

Proof of Proposition 3.3. From Definition 2.3 we know that Fn`1 “ FnFn´1. From Proposition 2.6
we know each Fn has fn ‘a’ values and fn`1 total terms. We let the coefficients of ‘a’ tiles be a “ 1;
we let the coefficients of the ‘b’ tiles be b “ 0. Then,

a1 . . . afn`2 “ Fn`1

“ FnFn´1

“ a1 . . . afn`1af1 . . . afn

Therefore,

An`1 “

fn`2
ÿ

k“1

akx
k

“

fn`1
ÿ

k“1

akx
k `

fn`2
ÿ

k“fn`1`1

akx
k

“ An ` p

fn
ÿ

k“1

akx
kqxfn`1

“ An ` pAn´1qxfn`1

■

If we repeat what we did on the ‘a’ tiles for the ‘b’ values we can obtain its exponent generating
function.
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Definition 3.4. Let bk be the position of the kth ‘b’ value in limnÑ8 Fn. Then bk is defined as,

bk “

#

0 if the kth letter is ‘a’
1 if the kth letter is ‘b’

Definition 2.3 gives all the terms in the Fibonacci Substitution for Fn. If An is subtracted from
the total Fn summation of the ‘a’ and ‘b’ tiles then only the summation of the ‘b’ tiles is left. By
using this process, the ‘b’ exponent generating function is as follows,

Definition 3.5. Let Bnpxq represent the exponent generating function for the bn tiles in Fn. Then,

Bnpxq “

fn`1
ÿ

k“1

xk ´ Anpxq “

fn`1
ÿ

k“1

bkx
k

are the partial sums for the generating function Bpxq “
ř8

k“1 bkx
k.

Due to this definition, the first 8 iterations of Bnpxq are:

B0 “ 0

B1 “ 0

B2 “ x2

B3 “ x2

B4 “ x2 ` x5

B5 “ x2 ` x5 ` x7

B6 “ x2 ` x5 ` x7 ` x10 ` x13

B7 “ x2 ` x5 ` x7 ` x10 ` x13 ` x15 ` x18 ` x20

Notice that the exponents in each Bnpxq have the degrees that were missing in the correspond-
ing Anpxq. Further, Bnpxq follows a similar pattern, but begins a step later than Anpxq. Thus, we
have the following recurrence:

Proposition 3.6. Exponent Generating Function of the ‘b’ Tiles For n ě 3,

Bn`1 “ Bn ` pBn´1qxfn`1
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Proof of Proposition 3.6. By Definition 3.4 and Proposition 3.3,

Bn`1 “

fn`2
ÿ

k“1

xk ´ An`1

“

fn`2
ÿ

k“1

xk ´ pAn ` An´1x
fn`1q

“ p

fn`1
ÿ

k“1

xk ´ Anq ` p

fn`2
ÿ

k“fn`1`1

xk ´ An´1q

“ p

fn`1
ÿ

k“1

xk ´ Anq ` p

fn
ÿ

k“1

xk ´ An´1qxfn`1

“ Bn ` pBn´1qxfn`1

■

The generating functions Anpxq and Bnpxq provide useful representations of the ‘a’ and ‘b’ val-
ues in the Fibonacci Substitution. By manipulating these generating functions, further information
about the Fibonacci Substitution can be gained such as the radius and interval of convergence.

Theorem 3.7. A(x) and B(x) have radius of convergence of R “ 1 and converge on the interval
p´1, 1q.

Proof of Theorem 3.7. We have Apxq ` Bpxq “
ř8

k“1 x
k “ x

1´x . Thus on [0,1) we have,

0 ď Apxq, Bpxq ď

8
ÿ

k“1

xk

Since
ř8

k“1 x
k is a geometric sequence, it converges absolutely on ´1 ă x ă 1. Thus by the

comparison test, A(x) and B(x) must also converge absolutely on ´1 ă x ă 1. Clearly A(x) and
B(x) diverge at x “ 1, resulting in a radius of convergence of R “ 1. ■

The interval and radius of convergence shows that the interesting behaviour of the Fibonacci
Substitution occurs on ´1 ă x ă 1, allowing focus to be restricted to this interval. As shown below
in the following figures, the generating function diverges to infinity when above x “ 1 and diverges
to either infinity or negative infinity depending on the iteration n when below x “ ´1.
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(a) Range
“

´1, 1
‰

(b) Range
“

´0.99, 0
‰

Figure 1: An when n “ 28

3.2 Coefficients Represent the Positions

Let the coefficients now represent the positions of the ‘a’ values in the subwords of the Fibonacci
Substitution.

Definition 3.8. Let ck be the position of the kth ‘a’ value in limn“8 Fn

By using Definition 3.8, the ‘a’ tiles in Fn can be separated from the ‘b’ tiles. By taking the
summation of the ‘a’ tiles’ coefficients, the coefficient generating function of the ‘a’ tiles can be
found for each Fn iteration.

Definition 3.9. Let ‘Cn’ represent the coefficient generating function that corresponds to Fn. Then,

Cnpxq “

fn
ÿ

k“1

ckx
k

are the partial sums for the generating function Cpxq “
ř8

k“1 ckx
k.

The generating functions of the first 8 subwords using Definition 3.9 are,

C0 “ 0

C1 “ x1

C2 “ x1

C3 “ x1 ` 3x2

C4 “ x1 ` 3x2 ` 4x3

C5 “ x1 ` 3x2 ` 4x3 ` 6x4 ` 8x5

C6 “ x1 ` 3x2 ` 4x3 ` 6x4 ` 8x5 ` 9x6 ` 11x7 ` 12x8

C7 “ x1 ` 3x2 ` 4x3 ` 6x4 ` 8x5 ` 9x6 ` 11x7 ` 12x8 ` 14x9 ` 16x10 ` 17x11 ` 19x12 ` 21x13
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(a) Range
“

´1, 1
‰

(b) Range
“

´0.99, 0
‰

Figure 2: A1
n when n “ 28

where C3 has two ‘a’ values that are in position 1 and 3, C4 has three ‘a’ values in positions 1, 3,
4 and so on.

Notice that for C3 the new term 3x2 is the same as r2x1 ` x1s1, for C4 the new term 4x3 is the
same as r3x1 `x1s2, for C5 the new terms 6x4 ` 8x5 is the same as r5px1 ` 3x2q `x1 ` 3x2s3. This
pattern continues on and thus we derive the formula,

Cn`1 “ Cn ` rdegpCn`1qpx1 ` x2 ` ... ` xdegpCn´1qq ` Cn´1sxdegpCnq

The highest degree in Cn`1 has a value of the fn`1
th Fibonacci number, Cn has a degree of the

fn
th Fibonacci number and Cn´1 a degree of the fn´1

th Fibonacci number. This pattern repeats,
allowing for the generalization of the coefficient generating function to the following proposition:

Proposition 3.10. Coefficient Generating Function of the ‘a’ Tiles For n ě 2,

Cn`1 “ Cn ` rfn`1px1 ` x2 ` ... ` xfn´1q ` Cn´1sxfn

Proof of Proposition 3.10. From Proposition 2.6 we know each Fn has fn ‘a’ values and fn`1 total
terms. Since the positions of the ‘a’ values in Fn`1 are c1, c2, . . . , cfn`1 and Fn`1 “ FnFn´1 then,

ck`fn “ ck ` fn`1
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(a) Range
“

´1, 1
‰

(b) Range
“

´0.99, 0
‰

Figure 3: A2
n when n “ 28

for 1 ď k ď fn´1. Thus,

Cn`1 “

fn`1
ÿ

k“1

ckx
k

“

fn
ÿ

k“1

ckx
k `

fn`1
ÿ

k“fn`1

ckx
k

“ Cn ` p

fn´1
ÿ

k“1

pck ` fn`1qxkqxfn

“ Cn ` rfn`1px1 ` x2 ` ... ` xfn´1q ` Cn´1sxfn

■

Next we find the coefficient generating functions for the ‘b’ tiles in the Fibonacci Substitution:

Definition 3.11. Let dk be the position of the kth ‘b’ value in limn“8 Fn.

Definition 3.11 gives an easy way to separate the ‘b’ values in Fn from the ‘a’ tiles. Recall that
each Fn has fn´1 ‘b’ tiles. By taking the summation of the ‘b’ tiles’ coefficients, the coefficient
generating function of the ‘b’ tiles can be found for each Fn iteration.

Definition 3.12. Let ‘Dn’ represent the coefficient generating function that corresponds to Fn.
Then,

Dnpxq “

fn´1
ÿ

k“1

dkx
k

are the partial sums for the generating function Dpxq “
ř8

k“1 dkx
k.
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The first 8 iteration of Dnpxq can be found using Definition 3.12. They are as follows,

D0 “ 0

D1 “ 0

D2 “ 2x1

D3 “ 2x1

D4 “ 2x1 ` 5x2

D5 “ 2x1 ` 5x2 ` 7x3

D6 “ 2x1 ` 5x2 ` 7x3 ` 10x4 ` 13x5

D7 “ 2x1 ` 5x2 ` 7x3 ` 10x4 ` 13x5 ` 15x6 ` 18x7 ` 20x8

Note that the coefficients that are missing in Cnpxq are the coefficients in Dnpxq. The iterations
of Dnpxq follow a pattern similar to that above, starting a step delayed from Cnpxq with f3 “ 2 as
the coefficient. This is due to F1 of the Fibonacci Substitution lacking a ‘b’ value.

Proposition 3.13. Coefficient Generating Function of the ‘b’ Tiles For n ě 3,

Dn`1 “ Dn ` pfn`1px1 ` x2 ` ... ` xfn´2q ` Dn´1qxfn´1

Proof of Proposition 3.13. From Corollary 2.6 we know each Fn has fn ‘a’ values and fn`1 total
terms. Since the positions of the ‘b’ values in Fn`1 are d1, d2, . . . , dfn`1 and Fn`1 “ FnFn´1 we
get,

dk`fn “ dk ` fn`1

for 1 ď k ď fn´1. Thus,

Dn`1 “

fn`1
ÿ

k“1

dkx
k

“

fn´1
ÿ

k“1

dkx
k `

fn`1
ÿ

k“fn´1`1

dkx
k

“ Dn ` p

fn´2
ÿ

k“1

pdk ` fn`1qxkqxfn´1

“ Dn ` rfn`1px1 ` x2 ` ... ` xfn´1q ` Dn´1sxfn

■

Proposition 3.14. The ck and dk satisfy the following relations,

ck ` 1 ď ck`1 ď ck ` 2 and dk ` 1 ď dk`1 ď dk ` 3
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Proof of Proposition 3.14. It is clear that ck`1 ě ck`1, since position ck`1 must occur after position
ck. From Proposition 2.4, no two ‘b’ values can occur successively. Therefore ck`1 must occur in
either at ck ` 1 or ck ` 2.

From Proposition 2.5 we know that there can not be three successive ‘a’ tiles. Therefore the
dk equation follows similarly. ■

Proposition 3.15. The ck and dk satisfy the following relations,

k ď ck ď 2k and k ď dk ď 3k

Proof of Proposition 3.15. Let k “ 1, k P Z. We know c1 is in position 1. Thus we get,

k ď c1 ď 2k

1 ď 1 ď 2, which is true.

Let k “ n ` 1, k, n P Z. Assume that the relation k ď ck ď 2k holds. Then using Proposition 3.14
we get,

n ` 1 ď cn ` 1 ďcn`1 ď cn ` 2 ď 2n ` 2

By induction the result holds. The dk follows similarly. ■

Theorem 3.16. C(x) and D(x) converge on the interval p´1, 1q with radius of convergence R “ 1.

Proof of Theorem 3.16. We want to prove that the Fibonacci Substitution converges on p´1, 1q.
From Proposition 3.15, we know that k ď ck ď 2k where k is the number of positions and ck is the
kth a value. The comparison test then gives,

8
ÿ

k“1

k|x|k ď

8
ÿ

k“1

ck|x|k ď

8
ÿ

k“1

2k|x|k

Thus on r0, 1q,

8
ÿ

k“1

ck|x|k ď

8
ÿ

k“1

2k|x|k “ 2x
8
ÿ

k“1

kxk´1 “ 2x

ˆ

1

1 ´ x

˙1

Thus
ř8

k“1 ckx
k absolutely converges on p´1, 1q. Clearly Cpxq diverges at x “ 1, and so R “ 1.

Dpxq follows similarly. ■
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(a) Range
“

´1, 1
‰

(b) Range
“

´0.99, 0
‰

Figure 4: Cn when n “ 27

4 Zeros and Critical Points

4.1 Exponent Generating Function

As seen in the graph of A27, the polynomial begins to oscillate above and below the x-axis as it
approach x “ ´1. As n is increased, the number of oscillations seems to also increase, implying
that the number of zeroes must also increase. To quantify this increase, python code was used
to generate the An polynomials for n values ranging from 1 ´ 21 along with their first and second
derivatives. Once n ą 21, An became too large for the computer to calculate the zeroes. The
real roots of these polynomials were then calculated along with the limxÑ´1. The following table
displays the results,

Table 1: Zeroes and limits at ´1 for An and its derivatives

n An zeroes limxÑ´1An A1
n zeroes limxÑ´1A

1
n A2

n zeroes limxÑ´1A
2
n

1 0 ´ D.N.E. ` x P R 0
2 0 ´ D.N.E. ` x P R 0
3 0 ´ 0 ` 0 ´

4 -1.465571232
0

` -0.75
0

´ -0.5
0

`

5 0 ` -0.5
0

´ -0.5902396386
0

`

6 -1
0

` -0.7025894375 ´ -0.3645389694
0

`
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7 0 ´ -0.6223818629
-0.2474040974

` -0.8580198336
-0.3644230629

0

´

8 0 ´ -0.9294403565
-0.6908129137]

` -0.8708059914
-0.3644229720

0

´

9 0 ´ -0.9200122514
-0.6908241600

` -0.8644109919
-0.3644229720

0

´

10 0 ` -1
-0.9219017110
-0.6908241523

´ -0.9843296329
-0.8651360980
-0.3644229720

0

`

11 -0.9943626909
0

` -0.9780486735
-0.9221399149
-0.6908241523

´ -0.9654659749
-0.8651617552
-0.3644229720

0

`

12 -1
0

` -0.9823056016
-0.9221354447
-0.6908241523

´ -0.9682831429
-0.8651517404
-0.3644229720

0

`

13 0 ´ -0.9953740374
-0.9812092860
-0.9221354500
-0.6908241523

` -0.9919497760
-0.9678704244
-0.8651517404
-0.3644229720

0

´

14 0 ´ -0.9959759803
-0.9810974541
-0.9221354500
-0.6908241523

` -0.9927761863
-0.9678614762
-0.8651517404
-0.3644229720

0

´

15 0 ´ -0.9953791985
-0.9810994712
-0.9221354500
-0.6908241523

` -0.9923253509
-0.9678614874
-0.8651517404
-0.3644229720

0

´

16 0 ` -1
-0.9954991322
-0.9810994687

-0.92213554500
-0.6908241523

´ -0.9991430883
-0.9923825770
-0.9678614874
-0.8651517404
-0.3644229720

0

`
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17 -0.9996853705
0

` -0.9987650920
-0.9955145129
-0.9810994687
-0.9221354500
-0.6908241523

´ -0.9980601292
-0.9923841822
-0.9678614874
-0.8651517404
-0.3644229720

0

`

18 -1
0

` -0.9990087474
-0.9955142179
-0.9810994687
-0.9221354500
-0.6908241523

´ -0.9982261951
-0.9923841799
-0.9678614874
-0.8651517404
-0.3644229720

0

`

19 0 ´ -0.9997416509
-0.9989459271
-0.9955142183
-0.9810994687
-0.9221354500
-0.6908241523

` -0.9995507757
-0.9982012043
-0.9923841799
-0.9678614874
-0.8651517404
-0.3644229720

0

´

20 0 ´ -0.9997755003
-0.9989394742
-0.9955142183
-0.9810994687
-0.9221354500
-0.6908241523

` -0.9995972418
-0.9982006361
-0.9923841799
-0.9678614874
-0.8651517404
-0.3644229720

0

´

21 0 ´ -0.9997420108
-0.9989395917
-0.9955142183
-0.9810994687
-0.9221354500
-0.6908241523

` -0.9995718027
-0.9982006369
-0.9923841799
-0.9678614874
-0.8651617404
-0.3644229720

0

´

A sign pattern for the limxÑ´1 emerges in Table 1, where the An polynomials form a ´,´,´,`,`,`

pattern, A1
n repeats `,`,`,´,´,´, and A2

n has a ´,´,´,`,`,` pattern once n ą 6. A1
n also

always has the opposite sign to the An polynomials and A2
n always has the same signs as An

(once n ą 2). Through this information, a recurrence relation for the sign of An can be found.
Recall from Proposition 3.3 that An has formula An`1 “ An ` pAn´1qxfn`1 . We can see that the
value of An`1 at x “ ´1 is given recursively,

An`1p´1q “ Anp´1q ` An´1p´1qp´1qfn`1
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(a) Range
“

´1, 1
‰

(b) Range
“

´0.99, 0
‰

Figure 5: C 1
n when n “ 27

which explains this oscillating behaviour. From this finding we make the following conjecture,

Conjecture 4.1. Apxq has an infinite number of zeroes in the interval ´1 ă x ă 1.

As further evidence, Table 2 depicts the first 50 ‘a’ tiles in the Fibonacci Substitution as encoded
by Anpxq, the degrees corresponding to these ‘a’ terms using An, and the signs of each ‘a’ term
(positive or negative). The table does the same for the first derivative and the second derivative,
finding their first 50 ‘a’ values and their respective signs.

The signs of the largest degrees for the ‘a’ values display a pattern that has groups of three
positive or negative values and groups of two positive or negative values. By colouring the groups
of three identical signs pink and the groups of two signs blue, the Fibonacci Substitution arises
again. The pink sign groups can not have more than two groups in a row, representing the ‘a’
values in the Fibonacci Substitution; likewise, the blue blocks can not occur successively, repre-
senting the ‘b’ tiles in the Fibonacci Substitution.

Table 2: Signs of the first 50 terms of Ap´1q, A1p´1q, A2p´1q

k for ak ‰ 0 p´1qk Non-zero Apxq1 degree p´1qk Non-zero Apxq2 degree p´1qk

1 1 ´ 0 ` 1 ´

2 3 ´ 2 ` 2 `

3 4 ` 3 ´ 4 `

4 6 ` 5 ´ 6 `

5 8 ` 7 ´ 7 ´

6 9 ´ 8 ` 9 ´

7 11 ´ 10 ` 10 `

8 12 ` 11 ´ 12 `

9 14 ` 13 ´ 14 `
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10 16 ` 15 ´ 15 ´

11 17 ´ 16 ` 17 ´

12 19 ´ 18 ` 19 ´

13 21 ´ 20 ` 20 `

14 22 ` 21 ´ 22 `

15 24 ` 23 ´ 23 ´

16 25 ´ 24 ` 25 ´

17 27 ´ 26 ` 27 ´

18 29 ´ 28 ` 28 `

19 30 ` 29 ´ 30 `

20 32 ` 31 ´ 31 ´

21 33 ´ 32 ` 33 ´

22 35 ´ 34 ` 35 ´

23 37 ´ 36 ` 36 `

24 38 ` 37 ´ 38 `

25 40 ` 39 ´ 40 `

26 42 ` 41 ´ 41 ´

27 43 ´ 42 ` 43 ´

28 45 ´ 44 ` 44 `

29 46 ` 45 ´ 46 `

30 48 ` 47 ´ 48 `

31 50 ` 49 ´ 49 ´

32 51 ´ 50 ` 51 ´

33 53 ´ 52 ` 53 ´

34 55 ´ 54 ` 54 `

35 56 ` 55 ´ 56 `

36 58 ` 57 ´ 57 ´

37 59 ´ 58 ` 59 ´

38 61 ´ 60 ` 61 ´

39 63 ´ 62 ` 62 `

40 64 ` 63 ´ 64 `

41 66 ` 65 ´ 65 ´

42 67 ´ 66 ` 67 ´

43 69 ´ 68 ` 69 ´

44 71 ´ 70 ` 70 `

45 72 ` 71 ´ 72 `

46 74 ` 73 ´ 74 `

47 76 ` 75 ´ 75 ´

48 77 ´ 76 ` 77 ´

49 79 ´ 78 ` 78 `

50 80 ` 79 ´ 80 `

18



(a) Range
“

´1, 1
‰

(b) Range
“

´0.99, 0
‰

Figure 6: C2
n when n “ 27

The leading terms of An at x “ ´1 in Table 2 match the signs of the overall An polynomials in
Table 1. For instance, when n “ 2 in Table 1 the leading term is x1, which is negative at x “ ´1.
When n “ 3, Table 1 has x1 ` x3, which is also negative at x “ ´1. The third ‘a’ in Table 2 has
the leading term x4 and when n “ 4 in Table 1 the equation is x1 ` x3 ` x4: both have a positive
sign at x “ ´1. Thus, it seems that the largest degree in An may dominate, making the sign of the
polynomial at x “ ´1 the same as the leading degree.

Table 3 depicts the first 50 ‘b’ tiles in the Fibonacci Substitution as encoded by Bpxq, the
degrees corresponding to these ‘b’ terms using Bn and the signs of each ‘b’ term (positive or neg-
ative). The table does the same for the first derivative and the second derivative, finding their first
50 ‘b’ values and their respective signs.

Table 3: Signs of the first 50 terms of Bp´1q, B1p´1q, B2p´1q

k for bk ‰ 0 p´1qk Non-zero Bpxq1 degree p´1qk Non-zero Bpxq2 degree p´1qk

1 2 ` 1 ´ 0 `

2 5 ´ 4 ` 3 ´

3 7 ´ 6 ` 5 ´

4 10 ` 9 ´ 8 `

5 13 ´ 12 ` 11 ´

6 15 ´ 14 ` 13 ´

7 18 ` 17 ´ 16 `

8 20 ` 19 ´ 18 `

9 23 ´ 22 ` 21 ´
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10 26 ` 25 ´ 24 `

11 28 ` 27 ´ 26 `

12 31 ´ 30 ` 29 ´

13 34 ` 33 ´ 32 `

14 36 ` 35 ´ 34 `

15 39 ´ 38 ` 37 ´

16 41 ´ 40 ` 39 ´

17 44 ` 43 ´ 42 `

18 47 ´ 46 ` 45 ´

19 49 ´ 48 ` 47 ´

20 52 ` 51 ´ 50 `

21 54 ` 53 ´ 52 `

22 57 ´ 56 ` 55 ´

23 60 ` 59 ´ 58 `

24 62 ` 61 ´ 60 `

25 65 ´ 64 ` 63 ´

26 68 ` 67 ´ 66 `

27 70 ` 69 ´ 68 `

28 73 ´ 72 ` 71 ´

29 75 ´ 74 ` 73 ´

30 78 ` 77 ´ 76 `

31 81 ´ 80 ` 79 ´

32 83 ´ 82 ` 81 ´

33 86 ` 85 ´ 84 `

34 89 ´ 88 ` 87 ´

35 91 ´ 90 ` 89 ´

36 94 ` 93 ´ 92 `

37 96 ` 95 ´ 94 `

38 99 ´ 98 ` 97 ´

39 102 ` 101 ´ 100 `

40 104 ` 103 ´ 102 `

41 107 ´ 106 ` 105 ´

42 109 ´ 108 ` 107 ´

43 112 ` 111 ´ 110 `

44 115 ´ 114 ` 113 ´

45 117 ´ 116 ` 115 ´

46 120 ` 119 ´ 118 `

47 123 ´ 122 ` 121 ´

48 125 ´ 124 ` 123 ´

49 128 ` 127 ´ 126 `

50 130 ` 129 ´ 128 `

20



The Fibonacci Substitution arises again in the signs of the leading ‘b’ degrees as encoded
by Bpxq. Signs that are identical and successive are grouped together. We colour the groups
of 2 identical signs pink and the signs without a repeat blue. The pink blocks can only have two
different groups in a row, representing the ‘a’ terms in the Fibonacci Substitution. The blue blocks
can not have another blue block preceding or following another blue block, much like how no two
‘b’ terms can appear successively in the Fibonacci Substitution. Thus, the blue blocks depict the
‘b’ terms.

Again, the leading term for the iterations of Bn dominates, making its sign the sign of the
whole iteration. Since the Fibonacci Substitution is infinite and aperiodic, the leading term must
constantly change between an even and odd value. In Table 3 and Table 2, odd leading exponents
correspond to a negative sign and even leading exponents correspond to a positive sign at x “ ´1.
Altogether, we conjecture that this finding means that the Fibonacci Substitution must continue
switching signs, causing an infinite amount of zeroes on the interval of p´1, 1q.

Conjecture 4.2. Bpxq has an infinite number of zeroes in the interval ´1 ă x ă 1.

4.2 Coefficient Generating Function

Similar to An, python code was used to generate Cn along with its first and second derivatives
for n values ranging from 1 - 21. The the real roots of these polynomials and their limxÑ´1 were
calculated. The following table displays the results,

Table 4: Zeroes and Limits at -1 for Cn and its Derivatives

n Cn zeroes limxÑ´1Cn C 1
n zeroes limxÑ´1C

1
n C2

n zeroes limxÑ´1C
2
n

1 0 ´ D.N.E. ` x P R 0
2 0 ´ D.N.E. ` x P R 0
3 -0.3333333333

0
` -0.1666666667 ´ D.N.E. `

4 0 ´ D.N.E ` -0.25 ´

5 0 ´ -0.3964341172
-0.2669600823

` -0.3358396550 ´

6 -0.5288497136
0

` -0.2469231852 ´ D.N.E. `

7 0 ´ -0.6223818629
-0.2474040974

` -0.4957039445 ´

8 -0.7483226352
-0.5926087851

0

´ -0.6893687201
-0.2474029681

` -0.5298364406 ´
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9 -0.5920920156
0

` -0.7990766519
-0.7307313380
-0.2474029681

´ -0.7737569351
-0.5317091164

`

10 -0.8246650504
-0.5920229150

0

´ -0.7261838575
-0.2474029681

` -0.5317068314 ´

11 -0.8260305973
-0.5920229150

0

´ -0.7261956250
-0.2474029681

` -0.5317068314 ´

12 -0.9473504187
-0.8260342287
-0.5920929150

0

` -0.9185999767
-0.7261956256
-0.2474029681

´ -0.8687584956
-0.5317068314

`

13 -0.8260342285
-0.5920929150

0

´ -0.9603993697
-0.9204001421
-0.7261956256
-0.2474029681

` -0.9520878626
-0.8687712015
-0.5317068314

´

14 -0.9774497434
-0.9627967299
-0.8260342285
-0.5920929150

0

´ -0.9729465578
-0.9203964040
-0.7261956256
-0.2474029681

` -0.9646975098
-0.8687712013
-0.5317068314

´

15 -0.9627488702
-0.8260342285
-0.5920929150

0

` -0.9203964040
-0.7261956256
-0.2474029681

´ -0.9796106714
-0.9680687558
-0.8687712013
-0.5317068314

`

16 -0.9892864876
-0.9627488811
-0.8260342285
-0.5920929150

0

´ -0.9812760667
-0.9203964040
-0.7261956256
-0.2474029681

` -0.9680474092
-0.8687712013
-0.5317068314

´

17 -0.9906803792
-0.9627488811
-0.8260342285
-0.5920929150

0

´ -0.98128331111
-0.9203964040
-0.7261956256
-0.2474029681

` -0.9680474097
-0.8687712013
-0.5317068314

´

18 -0.9959733996
-0.9907083202
-0.9627488811
-0.8260342285
-0.5920929150

0

` -0.9948198154
-0.9812833113
-0.9203964040
-0.7261956256
-0.2474029681

´ -0.9923722712
-0.9680474097
-0.8687712013
-0.5317068314

`
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19 -0.9907083155
-0.9627488811
-0.8260342285
-0.5920929150

0

´ -0.9968952456
-0.9955144989
-0.9812833113
-0.9203964040
-0.7261956256
-0.2474029681

` -0.9965135013
-0.9923944086
-0.9680474097
-0.8687712013
-0.5317068314

´

20 -0.9981786693
-0.9978665118
-0.9907083155
-0.9627488811
-0.8260342285
-0.5920929150

0

´ -0.9980507976
-0.9955079048
-0.9812833113
-0.9203964040
-0.7261956256
-0.2474029681

` -0.9976609630
-0.9923944081
-0.9680474097
-0.8687712013
-0.5317068314

´

21 -0.9978211991
-0.9907083155
-0.9627488811
-0.8260342285
-0.5920929150

0

` -0.9955079046
-0.9812833113
-0.9203964040
-0.7261956256
-0.2474029681

´ -0.9984426636
-0.9982338637
-0.9923944081
-0.9680474097
-0.8687712013
-0.5317068314

`

As Table 4 shows, a pattern for the signs of Cn as limxÑ´1 emerges where Cn repeats signs
´,´,`, C 1

n has `,`,´, and C2
n has ´,´,` once n ą 3. Also, notice that for any of the ´ signs

there are always an odd amount of zeroes and as n increases the quantity of these zeroes must
either stay the same as the previous negative Cn’s amount of zeroes, or increase by 2. On the
other hand, the ` signs always have an even amount of zeroes; and similar to before, the quantity
of zeroes must be the same as the previous iteration with a ` sign or increase by 2 to the next even
number. This result suggests that the number of roots can not decrease, leading to our following
conjecture,

Conjecture 4.3. Cpxq has an infinite number of zeroes in the interval ´1 ă x ă 1.

Similar to Cpxq we posit that Dpxq has an infinite number of zeroes on p´1, 1q; however, anal-
ysis of its roots was not carried out.
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