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Abstract

In this paper, a system of differential equations is formulated to study the issue of human-coyote
interactions in Edmonton. The system’s asymptotic behaviour is examined to predict the size of
the coyote population in the future, as well as the number of bold coyotes and individuals
concerned about coyotes. These values are shown to stabilize, indicating a need for better
management to fully eliminate bold coyote behaviour.

Introduction

Though human expansion has had negative consequences for many species, coyotes have
shown no struggle in being able to live in urban environments [13]. However, humans have not
remained similarly unaffected by the presence of these animals, with conflicts between humans
and coyotes only increasing as time goes on in various locations in North America [1], [7], [15].
The issue of coyote-human interactions has become serious enough to warrant multiple studies,
each attempting to better understand these interactions in an effort to reduce conflicts [12], [15],
[18].

The Edmonton Urban Coyote Project was one such study which focused on interactions
between coyotes and people in Edmonton using data collected from people submitting online
reports detailing their encounters with coyotes [7]. In this study, statistical methods were used to
determine the degree to which various factors affected the behaviour of coyotes and reactions
of people in human-coyote interactions. This included an analysis of changes in the level of
coyote boldness and human concern about coyotes over a 10-year period [7]. This analysis
involved using linear regressions with the data they gathered about the number of
human-coyote interactions and the nature of each encounter over these 10 years [7]. The
percentage of total reports from each year involving bold coyote behaviour and those involving
human concern both increased significantly, indicating a rise in these two factors [7].

However, a differential equations approach has not been used to predict how these
levels may look in the future. As such, we sought to create a system of differential equations to
model the level of coyote boldness and human concern, as well as the size of the coyote
population. Focusing on the future of this population and the impact of human-coyote
interactions is important in informing how we choose to manage our urban coyote population.

We begin by detailing the system of differential equations we created. This system is
partially based on the logistic model for the growth of a single population [6], as well as the
Lotka-Volterra model for competition between two species [6]. These types of models are
commonly used to better understand the behaviour of a single population considering the
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influence of different factors such as dispersal and migration [20], [17], as well as to examine the
effects of different types of interactions between species [8], [19].

After describing our system, we then examine its behaviour. We focus on fixed points
and asymptotic behaviour, using the eigenvalues of the Jacobian at each of these points to
determine their stability. This behaviour is then interpreted in order to understand what the
system predicts about the future of the coyote population and the levels of coyote boldness and
human concern.

The paper is organized as follows. In Section 2, we present and fully explain our system,
including the determination of the value of the parameters. Section 3 contains our examination
of the fixed points of the system. Section 4 then focuses on the interpretation of these results.
The paper’s conclusion is given in Section 5.

Modelling Human-Coyote Interactions

The system of equations we will be working with is as follows:

(1)�̇�(𝑡) = 𝑎
1
∙𝐶(𝑡) − 𝑎

2
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3
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(2)𝐵�̇�(𝑡) = 𝑏
1
∙𝐵𝐶(𝑡) − 𝑏

2
• 𝐵𝐶2(𝑡) − 𝑏

3
∙𝐵𝐶(𝑡)∙𝐶𝐻(𝑡) + 𝑏

4
∙𝐶(𝑡)
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In this system, C represents the number of coyotes in Edmonton, BC represents the total
number of bold coyotes, and CH represents the total number of individuals concerned about
coyotes. We use the number of reports of bold coyotes and reports where an individual felt
concerned as proxy values for BC and CH respectively. Due to a lack of data on the number of
coyotes in Edmonton, we use the data about coyote population dynamics reported in [11].

The meaning of each coefficient and its value is presented in Table 1. Many parameters
are very hard to determine due to difficulties in collecting extensive data about coyote
populations, so in Table 1 we present a possible scenario based on historical data and data
collected by the City of Edmonton.
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Table 1. Coefficients of the Mathematical Model Given in Equations (1)-(3)

Coefficient Meaning Value

a1 Per capita growth rate of the
coyote population

0.6

a2 Effect of intraspecific competition
on growth rate

0.2

a3 Effect of human-coyote
interactions on growth rate

0.0025

b1 Per capita growth rate of number
of bold coyotes

0.33

b2 Effect of reports of bold coyotes
on growth rate

0.02

b3 Effect of concerning
human-coyote interactions on
growth rate

0.01

b4 Effect of coyote population size
on the growth rate

0.05

d1 Per capita growth rate of number
of concerned individuals

0.85

d2 Effect of reports where concern
was expressed on growth rate

0.02

d3 Effect of concerning
human-coyote encounters on
growth rate

0.01

d4 Effect of coyote population size
on the growth rate

0.08

The rationale behind the values of these coefficients is given below.

Equation 1

This equation models the growth of the coyote population. The first two terms of the equation
are based on the classic logistic model for a single species population growth [6]. The value of
a1 is taken from literature on coyote population dynamics [11].

The term BC∙CH accounts for lethal removal of certain problematic or particularly
aggressive coyotes, which occurs in Edmonton in exceptional cases [4]. The coefficient of
BC∙CH is small as lethal removal of a small number of coyotes has a negligible effect on the
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population density [9], [5]. In addition, not all interactions between humans and coyotes create
concern and contribute to coyote eliminations.

Equation 2

This equation was partially based on the equations for two competing species [6]. In this case,
the two competing “species” are actually the numbers of bold coyotes and concerned
individuals, with this equation describing the behaviour of the number of bold coyotes. We
determined the coefficient of BC using data from the Edmonton Urban Coyote Project. Figure 6
from [7] shows 10 reports of bold coyotes in 2012 and a total of 682 by the end of 2021 [7], so
we calculate the rate of growth as . We divide by the initial number of coyote reports672

10 = 67. 2

to obtain a per capita growth rate of 0.33.
The coefficient of BC2 is negative since as coyotes become bolder and create concern

among people in Edmonton, there are increased efforts by the municipal government to educate
the public on how to “haze” coyotes to reduce boldness [4], in addition to implementation of
lethal removal [4]. The value of this coefficient is small due to possible inconsistencies in the
implementation [2] and efficacy [2], [3] of hazing. The coefficient of BC∙CH is small for similar
reasons.

The term C accounts for how the size of the coyote population affects the number of bold
coyotes. We use data from the Edmonton Urban Coyote Project [7] to estimate that 5% of the
coyote population is bold as some of their reports of bold coyotes may be describing the same
coyote.

Equation 3

Equation 3 is once again partially based on the Lotka-Volterra competition model [6]. This
equation describes the behaviour of the second “species”, which in this model is represented by
the number of reports of human-coyote interactions where an individual felt concerned. The
coefficient of CH was determined using Figure 6 from [7] in the same way as the coefficient of
BC in Equation 2.

The term CH2 accounts for the effect of individuals who try to educate others and reduce
people’s concern in an effort to protect coyotes. For simplicity, the value of the coefficient of CH2

was made the same as that of the coefficient of BC2. The value of the coefficient of BC∙CH was
also kept the same as in Equation 2.

The coefficient of C was determined in the same way as in Equation 2.
By using the values given above, we hope to obtain results similar to those found in [7].

System Behaviour

We use Maple to examine the behaviour of our system according to the values of the
coefficients given in Section 2. We first identify its fixed points.

Fixed points represent equilibrium points for the system. If a fixed point is stable and
initial conditions are in the neighbourhood of the point, then the system will go toward this stable
fixed point as time goes on. If a fixed point is unstable, then the system will go away from it no
matter how close the initial conditions are to this unstable fixed point [16]. Thus, the fixed points
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of our system are of interest as they represent possible future scenarios regarding the size of
the coyote population and levels of boldness and concern.

Let the functions f1, f2, f3 be given by the expressions on the right-hand sides of
equations (1), (2), (3), respectively. The fixed points are the roots of the system

𝑓
1
(𝐶, 𝐵𝐶, 𝐶𝐻) = 0. 6∙𝐶 𝑡( ) − 0. 2∙𝐶2 𝑡( ) − 0. 0025∙𝐵𝐶 𝑡( )∙ 𝐶𝐻 𝑡( ) = 0

𝑓
2

𝐶, 𝐵𝐶, 𝐶𝐻( ) = 0. 33∙𝐵𝐶 𝑡( ) − 0. 02∙𝐵𝐶2 𝑡( ) − 0. 01∙𝐵𝐶 𝑡( )∙𝐶𝐻 𝑡( ) + 0. 05∙𝐶 𝑡( ) = 0

𝑓
3

𝐶, 𝐵𝐶, 𝐶𝐻( ) = 0. 85∙𝐶𝐻 𝑡( ) − 0. 02∙𝐶𝐻2 𝑡( ) − 0. 01∙𝐵𝐶 𝑡( )∙𝐶𝐻 𝑡( ) + 0. 08∙𝐶 𝑡( ) = 0

Using Maple to solve this nonlinear system numerically, we find that the fixed points are
(0, 0, 0), (0, 0, 42.5), (0, 16.5, 0), and (2.772, 1.199, 42.164).

The stability of the fixed points is determined by the sign of the eigenvalues of the
Jacobian [16]:

𝐽 𝐶, 𝐵𝐶, 𝐶𝐻( ) =
∂𝑓

1

∂𝐶  
∂𝑓

1

∂𝐵𝐶  
∂𝑓

1

∂𝐶𝐻  
∂𝑓

2

∂𝐶  
∂𝑓

2

∂𝐵𝐶  
∂𝑓

2

∂𝐶𝐻  
∂𝑓

3

∂𝐶  
∂𝑓

3

∂𝐵𝐶  
∂𝑓

3

∂𝐶𝐻  ⎡⎢⎣
⎤⎥⎦

If all the eigenvalues are negative, the point is stable, otherwise, the fixed point is
unstable. This indicates whether the system tends toward or away from any of these points
given the appropriate initial conditions and hence whether we could expect the scenarios they
represent to occur. For each fixed point, to find the corresponding eigenvalues, we have to solve
for the roots of a cubic polynomial. Using Maple, we found the eigenvalues given in Table 2.

(0, 0, 0) is an unstable node due to all three eigenvalues being positive.
(0, 0, 42.5) is unstable as well as it has one positive and two negative eigenvalues. (0,

16.5, 0) is similar as it has one negative eigenvalue and two with positive real parts. These
points likely act as saddle nodes.

Finally, (2.772, 1.199, 42.164) must be a stable node due to the three negative
eigenvalues.

Table 2. Eigenvalues of the Fixed Points of the System Given in Equations (1)-(3).

Fixed Point Coordinates Eigenvalues

P1 (0, 0, 0) 0.85, 0.6, 0.33

P2 (0, 0, 42.5) 0.592, -0.85, -0.087

P3 (0, 16.5, 0) 0.643+0.039i, 0.643-0.039i,
-0.33

P4 (2.772, 1.199, 42.164) -0.854, -0.497, -0.146
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In the next section, we present a computer simulation in Maple to show the behaviour of
the system.

Discussion

Figure 1a. Behaviour of the mathematical
model given in equations (1)-(3). The
purple, pink, green, and blue trajectories
correspond to the initial conditions (20, 20,
10), (20, 30, 50), (0.1, 0.01, 0.1), and (10,
17, 80), respectively.

Figure 1b. Behaviour of the mathematical
model given in equations (1)-(3). The orange,
magenta, red, cyan, and dark blue trajectories
correspond to the initial conditions (3, 25, 10),
(5, 30, 80), (18, 40, 10), (15, 50, 60), and (20,
40, 40), respectively.

Figure 1a shows the behaviour of the system’s fixed points using a few different initial
conditions. Each trajectory clearly tends toward the stable node. However, from Figure 1b, we
see that this does not occur for all initial conditions. The trajectories shown approach negative
infinity in terms of the variable C. Figure 2 provides a better look at the behaviour of the system
with respect to this variable using the initial conditions from Figure 1a and 1b.

Based on these results, the number of coyotes, number of bold coyotes, and number of
concerned individuals in Edmonton could stabilize under certain initial conditions, or we could
see a local extinction of the coyote population. In [7], the data collected showed that coyote
boldness and human concern were on the rise, with the number of reports made involving bold
coyotes and concerned individuals increasing with each year. However, the level of boldness
and concern cannot increase indefinitely as the number of coyotes will reach a maximum value
due to resource constraints [6]. Our results then align with these findings.
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Figure 2a. Asymptotic behaviour of variable
C. The initial conditions of each trajectory
are the same as in Figure 1a.

Figure 2b. Asymptotic behaviour of variable C.
The initial conditions of each trajectory are the
same as in Figure 1b.

Comparing the initial conditions from Figure 1a and 1b shows that when the initial value
of BC is large compared to the initial value of C, we see a local extinction of the coyote
population. This suggests that having a large amount of bold coyotes would lead to a local
extinction. This makes sense as a large presence of bold coyotes would lead to many instances
of lethal removal, decreasing the population. If enough coyotes are removed, the population will
eventually decrease to 0 [5].

Summary and Conclusion

In this study, we created a mathematical model to study the issue of human-coyote conflict in
Edmonton. While data on levels of coyote boldness and human concern from 2012-2021 had
been collected and analyzed [7], we used our model to predict what these levels may be in the
future.

Using computer simulations, we found that the total number of coyotes, the number of
bold coyotes, and the number of concerned individuals will stabilize under certain conditions.
This finding aligned with the results seen in [7], representing an end point to the growth of
coyote boldness and human concern that this study found. However, if the proportion of bold
coyotes is too high, the resulting amount of lethal removals will drive the local coyote population
to extinction.

According to these results, we are unable to fully eliminate bold coyote behaviour or
human concern without a local extinction of the coyote population. This shows that our current
methods for reducing boldness are not sufficient. In order to resolve this issue, the city may
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need to place a greater emphasis on hazing coyotes. This approach has already started being
used in Edmonton, with citizens volunteering to participate in a hazing study that took place in
2021 and 2022 [10]. This yielded promising results [14], so it may be beneficial to continue and
expand upon these efforts. In particular, it is important to educate as many individuals as
possible on hazing and encourage its implementation [2]. Citizens are often uncomfortable with
the idea of hazing [2], so a focus should be placed on identifying ways to make it seem more
appealing.

Our study is limited in that we only examined the behaviour of our system for one set of
coefficients. Changing the value of some of the parameters would allow us to gain a more
complete picture of the system’s behaviour and may reveal other possible end behaviours than
what was identified in this study. In particular, changing the parameters to reflect changes in
management tactics could help show the possible outcome of these changes. This is important
information which could inform decision-making about how best to handle the issue of bold
coyotes in the city.
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