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Abstract
We attempt to find solutions to the Diophantine equations from Fermat’s Last Theorem in the ring
Zrτ s, where τ is the golden mean. We begin with the case when n “ 3 and create an algorithm to
generate solutions to the equation. Out of these solutions, we have found only four to be primitive.
Also, we attempt to find solutions under higher powers greater than three but have not found any
solutions in such cases. The algorithm and solutions themselves are all provided in the paper.

1 Introduction

In the year 1637, Pierre de Fermat postulated in the Greek text “Arithmetica”, that the equation
xn ` yn “ zn, where n is an integer greater than 2, will have no positive integer solutions. Suppos-
edly at the time Fermat had a proof for this statement, but unfortunately he passed away before
documenting his findings. It was recognized as his “last theorem” because it stood as the only
piece of maths from Fermat still yet to be proven. For centuries, mathematicians tried their best
to uncover what could’ve been valid reasoning behind his theorem. Finally, in 1995 Andrew Wiles
famously published a proof for Fermat’s Last Theorem [4].

This paper attempts to find solutions to the equations in question from Fermat’s Last Theorem
within specifically Zrτ s. We first begin solving for n “ 3, finding out if there exist any solutions. And
if there are indeed solutions, we try to delineate which of these solutions are unique. Our team
also attempts to do this same thing with higher values such as n “ 4 and above. This paper will
not consider cases for n “ 2, as that has been completed previously by Marklund-Tweedle in 2021
[3].

We begin in Section 2 introducing the infrastructure required to define Zrτ s, along with the
necessary properties required to find solutions to our equations. First we will explain what τ

itself really is, proving basic addition, multiplication, and to show overall that Zrτ s is indeed a
ring. This allows us to build concepts such as units, and prove the existence of elements that are
either irreducible or prime numbers. All of these ideas allow us to build up towards a definition
of “primitive” solutions, which is crucial for understanding our problem. Section 3 documents the
progress in solving x3 `y3 “ z3, explaining how we derived our algorithm. Essentially, we took the
Diophantine equation in question and expanded it into a system of equations. From this system we
began to develop code in order to generate solutions. For n “ 3, we found four primitive solutions,
and have reason to believe that they are the only primitive solutions. For n ą 3, we were unable to
find any solutions at all.
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In section 4, we attempt and fail to find solutions for the Diophantine equations of n “ 4 and
higher. Finally in Section 5, we examine the equations by substitution and expanding the set to
Qrτ s. After some algebraic work we have found non-trivial solutions. We try this by breaking down
our previously used strategy and generalizing it for higher powers. All code is provided in their
respective sections within our paper.

2 Preliminaries

Before even beginning to find solutions to Fermat’s Last Theorem in Zrτ s, we need to describe
Zrτ s itself and make sense of its necessary properties. All of the following ring theory can be
found in [2].

Zrτ s :“ ta ` bτ : a, b P Zu

The roots of x2 ´ x ´ 1 “ 0 are τ “ 1`
?
5

2 and τ 1 “ 1´
?
5

2 , where τ is also known as the Golden
Ratio.

Zrτ s is a ring, which means we can perform addition and multiplication in it. Suppose x, y P

Zrτ s.
x ` y “ pa1 ` b1τq ` pa2 ` b2τq “ pa1 ` a2q ` pb1 ` b2qτ

which holds because pa1 ` a2q, pb1 ` b2q P Z.
Before we continue on to multiplication, we need to use a technique that allows us to simplify

the multiplication of τ by itself. Since we know τ “ 1`
?
5

2 and τ 1 “ 1´
?
5

2 , notice that 1´
?
5

2 “

1 ´ p1`
?
5

2 q so in other words
τ “ 1 ´ τ 1

Also ττ 1 “ ´1, since p1`
?
5

2 qp1´
?
5

2 q “ ´1. Finally if we multiply

τ2 “ ττ “ τp1 ´ τ 1q “ τ ´ ττ 1 “ τ ` 1

and therefore
τ2 “ τ ` 1

We can use the same type of methodology to calculate τ3 and beyond. And now we can
multiply

x ˚ y “ pa1 ` b1τq ˚ pa2 ` b2τq “ a1a2 ` a1b2τ ` b1a2τ ` b1b2τ
2

Since we derived τ2 “ τ ` 1 we get

x ˚ y “ a1a2 ` a1b2τ ` b1a2τ ` b1b2τ ` b1b2

and we may simplify everything to

x ˚ y “ pa1a2 ` b1b2q ` pa1b2 ` b1a2 ` b1b2qτ

which holds because pa1a2 ` b1b2q, pa1b2 ` b1a2 ` b1b2q P Z.
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Being a so-called ring of integers Zrτ s has a Galois conjugation

σ : Zrτ s Ñ Zrτ s ; σpm ` nτq “ m ` nτ 1 .

σ is a ring isomorphism. It follows immediately that N : Zrτ s Ñ Zrτ s

Npxq “ x ¨ σpxq

satisfies Npxyq “ NpxqNpyq. A fast computation shows that

Npm ` nτq “ pm ` nτqpm ` nτ 1q “ m2 ` mn ´ n2 P Z .

Next, recall that a P Zrτ s is an unit if there exists some b P Zrτ s such that

ab “ 1 .

Now we need to continue understanding preliminary concepts to flesh out the notion of a
“primitive” solution inside of Zrτ s. We must begin with units.

Fact 2.1. An element a P Zrτ s is an unit if and only if

Npaq “ ˘1 .

Units allows us to describe the ideas of irreducible and prime elements of Zrτ s to build a Unique
Factorization Domain (UFD).

2.1 UFD

Let us recall the following definitions:

Definition 2.2. An element a P Zrτ s is called irreducible if whenever a “ bc we have b is an unit
or c is an unit.

An element p P Zrτ s is called prime if whenever p|bc we have p|b or p|c.

The following is a well-known fact in any integral domain.

Fact 2.3. If p is prime, then p is irreducible.

Definition 2.4. A Unique Factorization Domain (UFD) Z is an integral domain such that any
element a P Z can be written in as a product of irreducibles

a “ q1q2 . . . qm .

Moreover, this writing is unique in the sense that if

a “ p1p2 . . . pk

is a product of irreducible elements then k “ m and there exists a bijection ϕ : t1, 2, . . . ,mu Ñ

t1, 2, . . . ,mu and units u1, . . . , um P Z such that

pj “ ujqϕpjq .
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Theorem 2.5. [3, Thm. 2.3] Zrτ s is an Euclidean domain. In particular,Zrτ s is a UFD and every
irreducible is a prime element.

Now that Zrτ s is properly understood as a UFD, we can now go ahead and introduce the idea
of a gcd (greatest common divisor).

Since Zrτ s is an UFD, every two elements a, b P Zrτ s with pa, bq ‰ p0, 0q have a gcdpa, bq.
Formally, a greatest common divisor of a, b is any element d P Zrτ s which satisfies

• d|a, d|b

• If e|a, e|b then e|d.

Recall here that if d is a gcd of a, b, then d1 is a gcd of a, b if and only if there exists a unit u
such that d1 “ ud.

We will simply denote by gcdpa, bq any gcd of a, b. Moreover, since Zrτ s is an Euclidean domain,
gcdpa, bq can be calculated via the Euclidean algorithm.

2.2 Diophantine equations

An equation is called Diophantine if there are two or more unknowns with integer coefficients.
Traditionally, these equations are mostly considered for solutions where the unknowns are all
integers. One of the most famous Diophantine equations is Fermat’s Last Theorem.

Fermat’s Last Theorem states that no three integers x, y, and z can satisfy the exponential
Diophantine equation

xn ` yn “ zn

if n ą 2, n P Z.
Famously proven by Andrew Wiles in 1995 [4], our team decided to find out if there existed

solutions to Fermat’s Last Theorem where instead x, y, and z are elements in the Zrτ s. Formally
we can describe our problem as the following.

Question 2.6. Are there solutions to the exponential Diophantine equation

xn ` yn “ zn

if n ą 2 when x, y, z P Zrτ s?

We initially suspected that there would indeed be solutions when n “ 3, so we decided to
focused our energy onto n “ 3 specifically before moving forward to higher values.

Every scalar multiple of a solution is itself a solution. Trivially, this means that there are an
infinite number of solutions, but this does not interest us since these solutions are effectively the
same. In order to filter these solutions out, we define some solutions as primitive.

Definition 2.7. A triple px, y, zq satisfying xn ` yn “ zn is called a primitive solution if

gcdpx, y, zq “ 1 .
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Operating under this definition, any scalar multiple of a primitive solution is nonprimitive; there-
fore, no set of primitive solutions will contain solutions which are scalar multiples of each other.
This removes the ”duplicate” solutions, and should make understanding the underlying structure
easier.

Any solutionpx, y, zq can be written in the form
$

’

&

’

%

x “ dx1

y “ dy1

z “ dz1

where d “ gcdpx, y, zq and px1, y1, z1q is a primitive solution. Moreover, this writing is unique up to
multiplication by units (or equivalent choice of gcd).

3 Solutions to n “ 3

We begin by breaking down our previously stated problem and setting n “ 3.

Question 3.1. Are there any solutions to the Diophantine equation x3 ` y3 “ z3 such that x, y, z P

Zrτ s?

We can then break down each x, y, z into their respective integer and tau components, where
we attempt to find solutions to

pa ` bτq3 ` pc ` dτq3 “ pe ` fτq3

where a, b, c, d, e, f P Z.
To solve this equation, we can expand each pair. Using binomial expansion we can see that

pa ` bτq3 “ a3 ` 3a2bτ ` 3ab2τ2 ` b3τ3

pc ` dτq3 “ c3 ` 3c2dτ ` 3cd2τ2 ` d3τ3

pe ` fτq3 “ e3 ` 3e2fτ ` 3ef2τ2 ` df3τ3

The most difficult part of this expansion is the τ2 and τ3, but it can be handled by reducing it
down into

τ2 “ τ ` 1

τ3 “ 2τ ` 1

Substituting those formula into the equations allow the expansions to become

pa ` bτq3 “ a3 ` 3a2bτ ` 3ab2τ ` 3ab2 ` 2b3τ ` b3

pc ` dτq3 “ c3 ` 3c2dτ ` 3cd2τ ` 3cd2 ` 2d3τ ` d3
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pe ` fτq3 “ e3 ` 3e2fτ ` 3ef2τ ` 3ef2 ` 2f3τ ` f3

So altogether we can then move the expanded terms of pe ` fτq3 to the left hand side, to get

pa3 ` 3a2bτ ` 3ab2τ ` 3ab2 ` 2b3τ ` b3q ` pc3 ` 3c2dτ ` 3cd2τ ` 3cd2 ` 2d3τ ` d3q ´

pe3 ` 3e2fτ ` 3ef2τ ` 3ef2 ` 2f3τ ` f3q “ 0

Notice that we can now factor out τ out of many of the terms, thus leading us to once again
break down this equation into an integer and tau components, giving us the system of equations

#

a3 ` 3ab2 ` b3 ` c3 ` 3cd2 ` d3 ´ e3 ´ 3ef2 ´ f3 “ 0

3a2b ` 3ab2 ` 2b3 ` 3c2d ` 3cd2 ` 2d3 ´ 3e2f ´ 3ef2 ´ 2f3 “ 0

To find solutions we can then use a computer to calculate for which instances of a, b, c, d, e, f P Z
does the system of equation above hold. We can make a simple script that does this in python.
First let’s make a function defining the two equations we aim to solve for.

# Calcuates system of equat ions when choosing each term
def ca lc eq ( a , b , c , d , e , f ) :

eq1 = ( a **3 + 3*a*b **2 + b**3 + c **3 + 3*c *d **2 + d**3
− e**3 − 3*e* f * *2 − f * * 3 )

eq2 = (3* a * *2 * b + 3*a*b **2 + 2*b **3 + 3*c * *2 * d + 3*c *d **2 + 2*d **3
− 3*e * *2 * f − 3*e* f * *2 − 2* f * * 3 )

return eq1 , eq2

In the meantime we can also conveniently at this stage calculate the respective norms of each
pair. Defining a function for these norms can be done by following the computation outlined above.

# Calcu la tes norms of each t r i p l e
def ca lc n ( a , b , c , d , e , f ) :

norms1 = a**2 + a*b − b**2
norms2 = c **2 + c *d − d**2
norms3 = e**2 + e* f − f * *2
return norms1 , norms2 , norms3

We can then test every possible value of a, b, c, d, e, f in a given range. To do so, we can use
six nested for loops to iterate through values of a through f. This is tedious but straightforward:

import math

so l = [ ] # L i s t where s o l u t i o n s are s tored
max = 20 # Search space

for a in range (1 , max ) :
for b in range ( −max, max ) :
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for c in range (1 , max ) :
for d in range ( −max, max ) :

for e in range ( −max, max ) :
for f in range ( −max, max ) :

eq1 , eq2 = ca lc eq ( a , b , c , d , e , f )
i f eq1 == 0 and eq2 == 0:

n1 , n2 , n3 = ca lc n ( a , b , c , d , e , f )
so l . append ( [ a , b , c , d , e , f , n1 , n2 , n3 ] )

Alternatively, we can store possible solutions as an array of length 6, and use a function to
”increment” the array by 1, treating it as a 6-digit number of arbitrary base.

We can increase the max value to increase the search space, although this naturally increases
computational resources required. Our team has found 120 solutions. The first six are as follows
and the remainder can be found in the Appendix.

p1 ´ 14τq3 ` p8 ´ 13τq3 “ p6 ´ 18τq3 p1 ` 15τq3 ` p8 ` 21τq3 “ p6 ` 24τq3

p2 ´ 9τq3 ` p7 ´ 9τq3 “ p6 ´ 12τq3 p2 ` 11τq3 ` p7 ` 16τq3 “ p6 ` 18τq3

p3 ´ 4τq3 ` p6 ´ 5τq3 “ p6 ´ 6τq3 p3 ` 7τq3 ` p6 ` 11τq3 “ p6 ` 12τq3

A quick observation of these solutions show that many of these solutions tend to be multiples
of the other. For example, p2´9τq3 ` p7´9τq3 “ p6´12τq3 is the same thing as p4´18τq3 ` p14´

18τq3 “ p12 ´ 24τq3 except multiplied by two for each term. Hence it’s easy to see that several of
these solutions are not primitive.

In that case it might be worth trying to find out of all these solutions which ones should be
primitive. There are potentially several ways of discovering them, but we have decided to attempt
to solve

x3 ` y3 ` z3 “ 0

where x, y, z P Zrτ s. When creating the system of equations previously we subtracted the z term,
but rewriting it in this form will make this method simpler.

Now if we divide both sides by z3, we end up with

x3

z3
`

y3

z3
` 1 “ 0

In other words, for any solution we have for px, y, zq there is immediately another triple pxz ,
y
z , 1q.

Though we must assume that the z component is the one that has the highest absolute value
norm.

In formulating this as an algorithm, we can compare each solution to each other. Divide a triple
by it’s z term, and check if it’s a unique value. Any new values of pxz ,

y
z q unlike the others can

be deemed a primitive solution. Translated into python, we can create a script alike the following
below.
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T = (1 + math . s q r t ( 5 ) ) / 2 # Tau value

# ‘ so l ’ i s the l i s t o f p rev ious l y generated s o l u t i o n s
# ‘ prim ’ i s the l i s t o f p r i m i t i v e s o l u t i o n s
prim = [ ]

# For each en t ry i n the l i s t , c a l c u l a t e ( x / z , y / z )
for i in so l :

x z = ( i [ 0 ] + i [ 1 ] * T ) / ( i [ 4 ] + i [ 5 ] * T )
y z = ( i [ 2 ] + i [ 3 ] * T ) / ( i [ 4 ] + i [ 5 ] * T )

for j in so l :

# Add any unique ( x / z , y / z ) e n t r i e s to our p r i m i t i v e s l i s t .
i f ( j != [ x z , y z ] ) and ( j != [ y z , x z ] ) :

pr im . append ( [ x z , y z ] )

Interestingly when running this program we observe that we end up with only two primitive
solutions

p0.9363389981249823, 0.5636610018750172q “

ˆ

4 ` τ

6
,
5 ´ τ

6

˙

p0.5636610018750176, 0.9363389981249824q “

ˆ

5 ´ τ

6
,
4 ` τ

6

˙

Because τ “ 1`
?
5

2 , we can deduce that these two values come from the solution p4 ` 1τq3 ` p5 ´

1τq3 “ p6 ` 0τq3 and conversely p5 ´ 1τq3 ` p4 ` 1τq3 “ p6 ` 0τq3. And including the non-trivial
solution and it’s flipped version we can establish a conjecture.

Conjecture 3.2. The equation x3 ` y3 “ z3 where x, y, z P Zrτ s has four primitive solutions.

p4 ` τq3 ` p5 ´ τq3 “ 63

p5 ´ τq3 ` p4 ` τq3 “ 63

13 ` 03 “ 13

03 ` 13 “ 13

4 Solutions to n ą 3

The same algorithm in the previous section is used, but instead of a specific formula to cube an
integer + tau pair, we use the more general formula to multiply two such pairs together:

pa ` bτqpc ` dτq “ ac ` adτ ` bcτ ` bdτ2
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“ ac ` adτ ` bcτ ` bdpτ ` 1q

“ ac ` adτ ` bcτ ` bdτ ` bd

“ ac ` bd ` pad ` bc ` bdqτ

Any pair can then be multiplied by itself an arbitrary number of times to achieve any arbitrary n-
value. The rest of the search algorithm proceeds as normal. We were unable to find any non-trivial
solutions for n ą 3.

Theorem 4.1. There are no non-trivial solutions in Zrτ s for pa ` bτqn ` pc ` dτqn “ pe ` fτqn for
4 ď n ď 7 and ´10 ď a, b, c, d, e, f ď 10 or 0 ď a, b, c, d, e, f ď 20.

Proof. The proof is done by running Algorithm 3 on page 6.

Conjecture 4.2. For n ě 4, there are no non-trivial solutions in Zrτ s for xn ` yn “ zn.

5 Reducing the equation in Zrτ s

We examined the algebraic structure of these Diophantine equations to see if we could prove
some of our conjectures. Of course, this led to more conjectures.

If we start with x3 ` y3 “ z3, denoting u “ x
z , v “

y
z , we have

u3 ` v3 “ 1

pu ` vqpu2 ´ uv ` v2q “ 1

pu ` vqppu ` vq2 ´ 3uvq “ 1

Let r “ u ` v, s “ u ¨ v, we have:

r3 ´ 3rs “ 1

with r, s P Qrτ s

Through testing, the only non-trivial found solution is u “ 5
6 ´ 1

6τ , v “ 2
3 ` 1

6τ , 13 ` 03 “ 13,
03 ` 13 “ 13 which means r “ 3

2 and s “ 19
36 . So all solutions of x3 ` y3 “ z3 lead to rational

solutions of r3 ´ 3rs “ 1. But this isn’t so helpful since the latter equation has an infinite number
of rational solutions, e.g. let r P Q and solve for s.

This leads us to believe that r and s are always rational.
Let’s examine this by letting

u “
m ` nτ

p

v “
k ` lτ

q
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for m,n, k, l, p, q P Z with u3 ` v3 “ 1. Then

s “ uv

“
mk ` pml ` nkqτ ` klτ2

pq

“
mk ` kl ` pml ` nk ` klqτ

pq

Conjecture 5.1. Let u, v P Zrτ s are so that u3 ` v3 “ 1. Then s “ uv satisfies either s “ 0 or
19 | mk ` kl and ml ` nk ` kl “ 0,

We found 4 non-trivial solutions for the triple

px, y, zq “ p4 ` τ, 5 ´ τ, 6q, p5 ´ τ, 4 ` τ, 6q, p1, 0, 1q, p0, 1, 1q ,

which translates into

pu, vq “

ˆ

2

3
`

τ

6
,
5

6
´

τ

6

˙

,

ˆ

5

6
´

τ

6
,
2

3
`

τ

6

˙

, p1, 0q, p0, 1q .

It is noticeable that

σ

ˆ

2

3
`

τ

6

˙

“
2

3
`

τ 1

6

“
2

3
`

1 ´ τ

6

“
2

3
`

1

6
´

τ

6

“
5

6
´

τ

6

and conversely, σ
`

5
6 ´ τ

6

˘

“ 2
3 ` τ

6

Conjecture 5.2. For all non-trivial solutions of u3 ` v3 “ 1 with u, v P Qrτ s we have v “ σpuq.

6 Conclusion

The brute-force search algorithms found no solutions for n ě 4 and created a long list of solutions
for n “ 3, some of which are noticeably proportional, like p13`5τq3`p14`13τq3 “ p18`12τq3 and
p26 ` 10τq3 ` p28 ` 26τq3 “ p36 ` 24τq3, but some are less noticeable, for example, we consider
p14 ` τq3 ` p13 ` 8τq3 “ p18 ` 6τq3 and p13 ` 5τq3 ` p14 ` 13τq3 “ p18 ` 12τq3

14 ` τ

13 ` 5τ
“

14 ¨ 13 ´ 1 ¨ 5 ` 14 ¨ 5 ` p13 ´ 14 ¨ 5qτ

132 ` 13 ¨ 5 ´ 52
“

13 ´ 3τ

11

13 ` 8τ

14 ` 13τ
“

13 ¨ 14 ´ 8 ¨ 13 ` 132 ` p14 ¨ 8 ´ 132qτ

142 ` 14 ¨ 13 ´ 132
“

13 ´ 3τ

11
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18 ` 6τ

18 ` 12τ
“

3 ` τ

3 ` 2τ
“

32 ´ 2 ` 3 ¨ 2 ` p3 ´ 6qτ

32 ` 3 ¨ 2 ´ 22
“

13 ´ 3τ

11

Therefore, the 2 equations are proportional by 13´3τ
11 .

In order to find primitive solutions in the list, we set one element as the anchor, then compare
the others.

x3 ` y3 “ z3

x3

z3
`

y3

z3
“ 1

Therefore, any triple px, y, zq can be transformed into pxz ,
y
z , 1q, if they are proportional, only one

is retained. From the original list of 120 solutions, we only found 4 primitive solutions:

p4 ` τq3 ` p5 ´ τq3 “ 63

p5 ´ τq3 ` p4 ` τq3 “ 63

13 ` 03 “ 13

03 ` 13 “ 13

Acknowledgements

This paper was assisted with the funding provided by NSERC Discovery grant 2024-04853 (NS)
and NSERC Discovery grant 2019-05430(CR), and by a Dr. Sherrill Brown Distinguished Re-
search Award at MacEwan University. Special thanks to Chris Ramsey and Nicolae Strungaru for
their guidance throughout the project.

We would like to thank the anonymous reviewer for their feedback in helping clarify our paper.

11



References

[1] D. Chris, F. Leif, L. Tom https://github.com/ChrisDelaCruz15/Diophantine-Fibonacci-2024

[2] T.W. Hungerford, Abstract Algebra: an introduction (Third edition), Brooks Cole (2013).

[3] S. Marklund, E. Tweddle, Pythagorean triples in the Fibonacci model set, arXiv:2109.03440
(2021).

[4] A. Wiles, Modular elliptic curves and Fermat’s Last Theorem, Annals of Mathematics 141
(1995), 443-551.

12

https://github.com/ChrisDelaCruz15/Diophantine-Fibonacci-2024


Appendix: Solutions for n “ 3

p1 ´ 14τq3 ` p8 ´ 13τq3 “ p6 ´ 18τq3 p1 ` 15τq3 ` p8 ` 21τq3 “ p6 ` 24τq3

p2 ´ 9τq3 ` p7 ´ 9τq3 “ p6 ´ 12τq3 p2 ` 11τq3 ` p7 ` 16τq3 “ p6 ` 18τq3

p3 ´ 4τq3 ` p6 ´ 5τq3 “ p6 ´ 6τq3 p3 ` 7τq3 ` p6 ` 11τq3 “ p6 ` 12τq3

p4 ´ 18τq3 ` p14 ´ 18τq3 “ p12 ´ 24τq3 p4 ` 1τq3 ` p5 ´ 1τq3 “ p6 ` 0τq3

p4 ` 3τq3 ` p5 ` 6τq3 “ p6 ` 6τq3 p5 ´ 13τq3 ` p13 ´ 14τq3 “ p12 ´ 18τq3

p5 ´ 1τq3 ` p4 ` 1τq3 “ p6 ` 0τq3 p5 ` 6τq3 ` p4 ` 3τq3 “ p6 ` 6τq3

p6 ´ 8τq3 ` p12 ´ 10τq3 “ p12 ´ 12τq3 p6 ´ 5τq3 ` p3 ´ 4τq3 “ p6 ´ 6τq3

p6 ` 11τq3 ` p3 ` 7τq3 “ p6 ` 12τq3 p6 ` 14τq3 ` p12 ` 22τq3 “ p12 ` 24τq3

p7 ´ 9τq3 ` p2 ´ 9τq3 “ p6 ´ 12τq3 p7 ´ 3τq3 ` p11 ´ 6τq3 “ p12 ´ 6τq3

p7 ` 10τq3 ` p11 ` 17τq3 “ p12 ` 18τq3 p7 ` 16τq3 ` p2 ` 11τq3 “ p6 ` 18τq3

p8 ´ 17τq3 ` p19 ´ 19τq3 “ p18 ´ 24τq3 p8 ´ 13τq3 ` p1 ´ 14τq3 “ p6 ´ 18τq3

p8 ` 2τq3 ` p10 ´ 2τq3 “ p12 ` 0τq3 p8 ` 6τq3 ` p10 ` 12τq3 “ p12 ` 12τq3

p8 ` 21τq3 ` p1 ` 15τq3 “ p6 ` 24τq3 p9 ´ 12τq3 ` p18 ´ 15τq3 “ p18 ´ 18τq3

p9 ` 2τq3 ` p9 ` 7τq3 “ p12 ` 6τq3 p9 ` 7τq3 ` p9 ` 2τq3 “ p12 ` 6τq3

p10 ´ 7τq3 ` p17 ´ 11τq3 “ p18 ´ 12τq3 p10 ´ 2τq3 ` p8 ` 2τq3 “ p12 ` 0τq3

p10 ` 12τq3 ` p8 ` 6τq3 “ p12 ` 12τq3 p11 ´ 6τq3 ` p7 ´ 3τq3 “ p12 ´ 6τq3

p11 ´ 2τq3 ` p16 ´ 7τq3 “ p18 ´ 6τq3 p11 ` 13τq3 ` p16 ` 23τq3 “ p18 ` 24τq3

p11 ` 17τq3 ` p7 ` 10τq3 “ p12 ` 18τq3 p12 ´ 16τq3 ` p24 ´ 20τq3 “ p24 ´ 24τq3

p12 ´ 10τq3 ` p6 ´ 8τq3 “ p12 ´ 12τq3 p12 ` 3τq3 ` p15 ´ 3τq3 “ p18 ` 0τq3

p12 ` 9τq3 ` p15 ` 18τq3 “ p18 ` 18τq3 p12 ` 22τq3 ` p6 ` 14τq3 “ p12 ` 24τq3

p13 ´ 14τq3 ` p5 ´ 13τq3 “ p12 ´ 18τq3 p13 ´ 11τq3 ` p23 ´ 16τq3 “ p24 ´ 18τq3

p13 ` 5τq3 ` p14 ` 13τq3 “ p18 ` 12τq3 p13 ` 8τq3 ` p14 ` 1τq3 “ p18 ` 6τq3

p14 ´ 18τq3 ` p4 ´ 18τq3 “ p12 ´ 24τq3 p14 ´ 6τq3 ` p22 ´ 12τq3 “ p24 ´ 12τq3

p14 ` 1τq3 ` p13 ` 8τq3 “ p18 ` 6τq3 p14 ` 13τq3 ` p13 ` 5τq3 “ p18 ` 12τq3

p15 ´ 3τq3 ` p12 ` 3τq3 “ p18 ` 0τq3 p15 ´ 1τq3 ` p21 ´ 8τq3 “ p24 ´ 6τq3

p15 ` 18τq3 ` p12 ` 9τq3 “ p18 ` 18τq3 p16 ´ 7τq3 ` p11 ´ 2τq3 “ p18 ´ 6τq3

p16 ` 4τq3 ` p20 ´ 4τq3 “ p24 ` 0τq3 p16 ` 12τq3 ` p20 ` 24τq3 “ p24 ` 24τq3

p16 ` 23τq3 ` p11 ` 13τq3 “ p18 ` 24τq3 p17 ´ 11τq3 ` p10 ´ 7τq3 “ p18 ´ 12τq3

p17 ` 8τq3 ` p19 ` 19τq3 “ p24 ` 18τq3 p17 ` 9τq3 ` p19 ` 0τq3 “ p24 ` 6τq3

p18 ´ 15τq3 ` p9 ´ 12τq3 “ p18 ´ 18τq3 p18 ` 4τq3 ` p18 ` 14τq3 “ p24 ` 12τq3

p18 ` 14τq3 ` p18 ` 4τq3 “ p24 ` 12τq3 p19 ´ 19τq3 ` p8 ´ 17τq3 “ p18 ´ 24τq3

p19 ` 0τq3 ` p17 ` 9τq3 “ p24 ` 6τq3 p19 ` 19τq3 ` p17 ` 8τq3 “ p24 ` 18τq3
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p20 ´ 4τq3 ` p16 ` 4τq3 “ p24 ` 0τq3 p20 ` 24τq3 ` p16 ` 12τq3 “ p24 ` 24τq3

p21 ´ 8τq3 ` p15 ´ 1τq3 “ p24 ´ 6τq3 p22 ´ 12τq3 ` p14 ´ 6τq3 “ p24 ´ 12τq3

p23 ´ 16τq3 ` p13 ´ 11τq3 “ p24 ´ 18τq3 p24 ´ 20τq3 ` p12 ´ 16τq3 “ p24 ´ 24τq3

p25 ´ 27τq3 ` p47 ´ 36τq3 “ p48 ´ 42τq3 p25 ´ 8τq3 ` p38 ´ 19τq3 “ p42 ´ 18τq3

p25 ` 11τq3 ` p29 ´ 2τq3 “ p36 ` 6τq3 p25 ` 14τq3 ` p29 ` 31τq3 “ p36 ` 30τq3

p26 ´ 22τq3 ` p46 ´ 32τq3 “ p48 ´ 36τq3 p26 ´ 3τq3 ` p37 ´ 15τq3 “ p42 ´ 12τq3

p26 ` 10τq3 ` p28 ` 26τq3 “ p36 ` 24τq3 p26 ` 16τq3 ` p28 ` 2τq3 “ p36 ` 12τq3

p27 ´ 17τq3 ` p45 ´ 28τq3 “ p48 ´ 30τq3 p27 ` 2τq3 ` p36 ´ 11τq3 “ p42 ´ 6τq3

p27 ` 6τq3 ` p27 ` 21τq3 “ p36 ` 18τq3 p27 ` 21τq3 ` p27 ` 6τq3 “ p36 ` 18τq3

p27 ` 25τq3 ` p36 ` 47τq3 “ p42 ` 48τq3 p28 ´ 12τq3 ` p44 ´ 24τq3 “ p48 ´ 24τq3

p28 ` 2τq3 ` p26 ` 16τq3 “ p36 ` 12τq3 p28 ` 7τq3 ` p35 ´ 7τq3 “ p42 ` 0τq3

p28 ` 21τq3 ` p35 ` 42τq3 “ p42 ` 42τq3 p28 ` 26τq3 ` p26 ` 10τq3 “ p36 ` 24τq3

p29 ´ 7τq3 ` p43 ´ 20τq3 “ p48 ´ 18τq3 p29 ` 12τq3 ` p34 ´ 3τq3 “ p42 ` 6τq3

p29 ` 17τq3 ` p34 ` 37τq3 “ p42 ` 36τq3 p30 ´ 2τq3 ` p42 ´ 16τq3 “ p48 ´ 12τq3

p30 ` 13τq3 ` p33 ` 32τq3 “ p42 ` 30τq3 p30 ` 17τq3 ` p33 ` 1τq3 “ p42 ` 12τq3

p31 ` 3τq3 ` p41 ´ 12τq3 “ p48 ´ 6τq3 p31 ` 9τq3 ` p32 ` 27τq3 “ p42 ` 24τq3

p31 ` 22τq3 ` p32 ` 5τq3 “ p42 ` 18τq3 p32 ` 5τq3 ` p31 ` 22τq3 “ p42 ` 18τq3

p32 ` 8τq3 ` p40 ´ 8τq3 “ p48 ` 0τq3 p32 ` 24τq3 ` p40 ` 48τq3 “ p48 ` 48τq3

p32 ` 27τq3 ` p31 ` 9τq3 “ p42 ` 24τq3 p33 ` 1τq3 ` p30 ` 17τq3 “ p42 ` 12τq3

p33 ` 13τq3 ` p39 ´ 4τq3 “ p48 ` 6τq3 p33 ` 20τq3 ` p39 ` 43τq3 “ p48 ` 42τq3

p33 ` 32τq3 ` p30 ` 13τq3 “ p42 ` 30τq3 p34 ´ 3τq3 ` p29 ` 12τq3 “ p42 ` 6τq3

p34 ` 16τq3 ` p38 ` 38τq3 “ p48 ` 36τq3 p34 ` 18τq3 ` p38 ` 0τq3 “ p48 ` 12τq3

p34 ` 37τq3 ` p29 ` 17τq3 “ p42 ` 36τq3 p34 ` 16τq3 ` p38 ` 38τq3 “ p48 ` 36τq3

p34 ` 18τq3 ` p38 ` 0τq3 “ p48 ` 12τq3 p35 ` 12τq3 ` p37 ` 33τq3 “ p48 ` 30τq3

p35 ` 23τq3 ` p37 ` 4τq3 “ p48 ` 18τq3 p36 ` 8τq3 ` p36 ` 28τq3 “ p48 ` 24τq3

p36 ` 28τq3 ` p36 ` 8τq3 “ p48 ` 24τq3 p37 ` 4τq3 ` p35 ` 23τq3 “ p48 ` 18τq3

p37 ` 33τq3 ` p35 ` 12τq3 “ p48 ` 30τq3 p38 ` 0τq3 ` p34 ` 18τq3 “ p48 ` 12τq3

p38 ` 38τq3 ` p34 ` 16τq3 “ p48 ` 36τq3 p38 ´ 38τq3 ` p70 ´ 52τq3 “ p72 ´ 60τq3
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