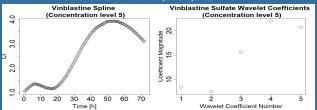

MacEwan

Clustering of Time Series Cytotoxicity Data

Dan Richard

Introduction



Cubic Spline Interpolation

- Raw data are sampled at uneven timesteps, so we fitted cubic splines and sampled at a fixed rate
- Data are smooth with little noise so there is negligible loss from interpolation.

Wavelet Transformation

- Wavelet analysis is similar to Fourier analysis in that it provides us with information from the frequency domain
- Wavelets differ from Fourier analysis by providing information from the time domain as well
- Wavelet analysis was used to reduce the dimension of the data set:
 - Each chemical concentration curve was reduced to 5 wavelet coefficients from 160 interpolated points

Acknowledgements

This project was supported by a USRI project grant, under the supervision of Prof. Cristina Anton, Department of Mathematics and Statistics, MacEwan University.

Self Organizing Maps

- Self organizing maps (SOMs) are useful for visualizing high dimensional data
- SOMs were used to cluster the wavelet coefficients
- Steps for fitting a SOM [2]:
- Provide a grid/graph where each node corresponds with a vector in the data space
- 2. Iteratively update the position of the node vectors based on their distances from the data points in a way similar to K-means clustering
- 3. Data points are assigned to their closest node

• There are many parameters and settings to consider prior to fitting a SOM in R:

- Neighborhood Function: Determines the percentage of distance to
 - adjust neighbouring nodes (during step 2 above)
- Grid Size: how many nodes?

Grid Topology: Hexagonal versus Rectangular; Toroidal or Planar
 We first consider data from MOA clusters 1 and 10, and then from MOA clusters
 1 3 and 10 [1]

Results: 2 Clusters

leighbourhood Function	Grid Topology	Toroidal	Grid Size	Overall Rate	MOA Group	Cluster 1	Cluster 2
GAUSSIAN	HEXAGONAL	TRUE	4 X 3	0.8333	MOA 1 MOA 10	0.7931	0.2069
						0.0769	0.9231
		FALSE	6 X 5	0.8333	MOA 1 MOA 10	0.7931	0.2069
	RECTANGULAR		4 X 3		MOA 10	0.0769	0.9231
		TRUE		0.8571	MOA 10		0.1724
		FALSE	4 X 3	0.7857	MOA 1	0.7241	0.2759
					MOA 10	0.0769	0.9231
BUBBLE	HEXAGONAL	TRUE	4 X 3	0.0574	MOA 1	0.8276	0.1724
				0.8571	MOA 10	0.0769	0.9231
		FALSE	4 X 3	0.5714	MOA 1	0.4138	0.5862
				0.5714	MOA 10	0.0769	0.9231
	RECTANGULAR	TRUE	6 X 5	0.8571	MOA 1	0.8276	0.1724
				0.8571	MOA 10	0.0769	0.9231
		FALCE	6 X 5	0.7857	MOA 1	0.8276	0.1724
		FALSE 6 X 5		0.7857	MOA 10	0.3077	0.6923

Figure to the left is a

Rectangular, toroidal

Toroidal seems to out

neighbourhood function

perform plane grids Result is less impacted

by the choice of

and grid topology

a Gaussian

grid

neighbourhood

function, and

SOM mapping plot with

SOM Visualization: 2 Clusters

Results: 3 Clusters

Neighbourhood Function	Grid Topology	Toroidal	Grid Size	Overall Rate	MOA Group	Cluster 1	Cluster 2	Cluster 3
	HEXAGONAL	TRUE	6 x 5	0.6579	MOA 1 MOA 3 MOA 10	0.4762 0.2500 0.0769	0.3333 0.7500 0.0000	0.1905 0.0000 0.9231
		FALSE	4 x 3	0.6842	MOA 10 MOA 1 MOA 3 MOA 10	0.0769 0.5714 0.2500 0.0769	0.2381 0.7500 0.0000	0.1905 0.0000 0.8462
GAUSSIAN	RECTANGULAR	TRUE	4 x 3	0.6842	MOA 1 MOA 3 MOA 10	0.5714 0.2500 0.0769	0.2381 0.5000 0.0000	0.1905 0.2500 0.9231
		FALSE	6 x 5	0.7105	MOA 1 MOA 3 MOA 10	0.7619 0.5000 0.0769	0.0476 0.5000 0.2308	0.1905 0.0000 0.6923
	HEXAGONAL	TRUE	4 x 3	0.6316	MOA 1 MOA 3 MOA 10	0.4762 0.2500 0.0769	0.3333 0.7500 0.0769	0.1905 0.0000 0.8462
		FALSE	6 x 5	0.6053	MOA 1 MOA 3 MOA 10	0.6667 0.2500 0.0769	0.1429 0.0000 0.2308	0.1905 0.7500 0.6923
BUBBLE	RECTANGULAR	TRUE	6 x 5	0.5526	MOA 1 MOA 3 MOA 10	0.4762 0.2500 0.0769	0.3333 0.7500 0.3077	0.1905 0.0000 0.6154
		FALSE	6 x 5	0.6316	MOA 1 MOA 3 MOA 10	0.4286 0.0000 0.0769	0.3810 1.0000 0.0769	0.1905 0.0000 0.8462

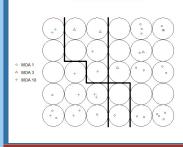


Figure to the left is a SOM mapping plot with a Gaussian neighbourhood function, and Rectangular, planar grid Gaussian separates the MOA better than the bubble neighbourhood function Other parameters appear to

have little impact on the

overall rate

Conclusions

- Chemical sets of concentration curves tend to group by their MOA clusters, but there
 is room for improvement.
- The performance is probably affected by the range of the concentrations used in the in-vitro experiments for each toxicant.
- SOMs are a useful tool for visualizing high dimensional data, but require a lot of parameter tuning.

References

 Zhang et al., Machine learning algorithms for mode-of-action classification in toxicity assessment, BioData Mining, 9:19, (2016).
 Kohonen, Teuvo, Essentials of the self-organizing map. Neural Networks 37, pp. 52-65