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Moore’s Law — The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
linked to Moore's law.
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HISTORY

« Moore’s Law has limits, and must
eventually fail

« So far, innovation has allowed the creation
of ever smaller processors

« Currently, smallest is 5 nm (Af right, 20 nm)
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HISTORY

« Problems classified according to computational
complexity

« P if soluble in Polynomial fime; NP if not.

« Conventional computers can handle P class problems

« Conventional computers struggle with NP class problems
» Integer factorization problem a classic NP problem

* NP problems may be infractable even for best

supercomputers Fig. 4 Comparison of the_ size scal-
ing of a polynomial function (_N4) with
a mnon-polynomial function, namely
exp(N).




HISTORY

« Feynmann proposes “quantum
computers” in 1982

 In 1985, David Deutsch identifies basic
principles of guantum computation

 With Richard Jozsa, formulates Deutsch-
Jozsa algorithm in 1992



HISTORY

Information encoded as quantum states— superpositions of eigenstates
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HISTORY

« 1994, Peter Shor develops his
algorithm for the factorization

problem
« Demonstrates that for a quantum

computer, the factorization
problem is of P class complexity




GROVER'S
ALGORITHM

1996, Lov Grover described the
olgorl’rhm that now bears his name

« Described as a means of searching
and unsorted database

» For n possible values that need to
be searched for a single correct
value, is more efficient than similar
conventional computer algorithms
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OVERVIEW

siven an alqgoritt F '
Given an algorithm F, - Performs an exhaustive search of N values for
find a number t M desired values

such that F(t)=-1 . Tags correct value as -1, and wrongs values as
]

« The algorithm is a function which checks
whether inputs are valid or not based on some
Criteria




We call our algorithm, or function,
an “Oracle”

Provide it an L-qubit input, and one
auxiliary qubit, to produce L+1
outputs

How many trips to see the Oracle
are needed to find our desired
valuee

Answer: Classically, N-1

Grover’s algorithm answer: You
might be surprised!

OVERVIEW




S— ‘ FIRST SUBROUTINE

* Three subroutines comprise
the algorithm

* First consists of a Haodamard
gate

« Basically, places the inifial
“blank” ket into the equal
superposition state
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« The Marking Subroutine

« “Marks” the correct input -1,
and leaves undesired inputs
unchanged




THIRD SUBROUTINE

« Tags all kets except the zero ket with -1




« Combine the three subroutines to produce G
= HBHM

« G the “Grover lteration”, the unitary
operation which perform the search



GEOMEITRIC
EXPLANATION

« Geometrically, all kets can be
parameterized in plane through
themselves and the target

« What does Grover iteration do fto
reach the target state?




GEOMEITRIC
EXPLANATION

« For an arbitrary state, consider the effects of
G = HBHM

M changes the sign of the t component

 Overall effect, areflection about the
horizontal axis




GEOMEITRIC
EXPLANATION

« HBH does not affect the ket | u>

« Hence, HBH constitutes a reflection about
the line through | p>
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GEOMETRIC
EXPLANATION

Taken together, G produces a
rotation foward the solution t

« We strategically choose our number
of iterations to bring use as close to
t as possible without passing

« How many iterations does this take?

In fact, about VN only, compared
to N for classical algorithms




CONCLUSIONS

Grover'’s Algorithm is optimal; under idealized condifions, cannot be
surpassed by any quantum or classical exhaustive search algorithms

For M desired inputs, completes search in order /(N/M); contrasted with
N/M classically

The fast, probabilistic nature of guantum computing and search algorithms
compliments the slower deterministic nature of classical computers

Taken together, guantum computing can take problems impossible for
classical computers, and make them possible to solve exactly

We should see the realization of this potential over the next several decades



