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Quantum computation is the study of the information processing tasks 

which may be accomplished using quantum mechanical systems. At the 

heart of inquiries to ascertain the potential of quantum computation is the 

question of whether it is possible for a quantum computer to efficiently 

solve computational problems which have no efficient solution on a 

classical computer. Pioneering work done by David Deutsch, Peter Shor, 

Lov Grover and others in the 1980s and 1990s established a great deal of 

the essential theoretical framework and results which provided answers to 

this question which has justified continued research and interest in 

quantum computing ever since. Today we will provide a brief historical 

and functional overview of the development of quantum computing and its 

applications during this time, and contrast it with classical computing, and 

in particular, we will examine Grover’s algorithm as an illustrative example 

of the potential benefits of quantum search algorithms. 
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Computer technology today is based on the silicon microchip. First 

introduced in the 1960s, it is the font from which which countless 

electronic and technological innovations have sprung ever since. In 1965, 

Gordon Moore, co-founder of Intel, first articulated his now famous law, 

which predicted that the number of transistors on a chip would double 

about every 2 years, for at least the subsequent 10 years. In fact, that 

exponential growth has so far held effectively until the present. (Slide Fig. 

1) 
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There are, however, reasons acknowledged by Moore himself, why the 

law must eventually begin to fail. So far, improvements in microchip 

technology have paralleled improvements made in the fabrication methods, 

and it in this way that we have been able to produce transistors of ever 

decreasing size. Current commercially available transistors are as small as 



5 nm. Maintaining this trend has become more and more difficult, owing to 

production costs, as well as to much more fundamental physical 

constraints. (Slide Fig. 2) 
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As transistor sizes decrease, the more serious problem of quantum 

effects begin to manifest as the size of the transistors become comparable 

to the de Broglie wavelength of the electrons which carry the signals. At 

these scales, the classical electromagnetic principles that govern circuit 

design, such as Ohm’s law, no longer hold. Although the development of 

semiconductor nanostructures and quantum transport theory has made 

effective and extremely fascinating contributions to prolonging the natural 

life of Moore’s Law, inevitably it must fail when the size of transistors 

become comparable to the size of the individual atoms. To quote Moore 

himself, “In terms of size of transistors you can see that we're approaching 

the size of atoms which is a fundamental barrier, but it'll be two or three 

generations before we get that far—but that's as far out as we've ever been 

able to see. We have another 10 to 20 years before we reach a fundamental 

limit. By then they'll be able to make bigger chips and have transistor 

budgets in the billions.” [Techworld Magazine, April 13, 2010] (Slide Fig. 3)  

These fundamental limits on how much computational power that can be 

increased through improvements to existing technologies in turn impose 

limits on the scale of the computational problems that can be tackled, as 

they are ultimately limited by the computer processing power that is 

available.  
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The complexity of problems, or tasks, are classified according to the 

asymptotic behavior of solutions. That is, in terms of lower bounds on the 

number of iterations of a process required to obtain a solution. If the 

number of computer operations increases as a polynomial power of the 

size n, then the problem is said to belong to the polynomial complexity 

class, or class P. If the number of operations increases faster than a 



polynomial function, then the problem is said to belong to the non-

polynomial complexity class, NP. For instance, problems in the P class are 

generally tractable for conventional computers; historically, when such 

problems have been too hard to solve, in time their solution became 

practical due to exponential increases in processing power. NP class, 

however, are a different matter. For such problems, the general issue is 

that a small increase in the size of the problem leads to a very large 

increase in the amount of computing power required to solve it. A classic 

example of an NP problem is the factorization of large numbers. For a given 

integer n, the number of operations required to find its prime factors 

increases exponentially as n increases. From a computational perspective, 

the required computational time exponentially increases by increasing n—

hence the difficulty that computer scientists face when dealing with 

problems in the NP class. Such problems are often impractical, even with 

the use of the most powerful conventional computers. And it was against 

the background of such problems that the idea of quantum computation 

was conceived. [Fig. 4] 
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Conventional computers which run according to classical principles. 

Mathematically speaking, according to the operations of universal Church–

Turing machine. The birth of quantum computation came from the 

realization that it might be possible to construct other types of computers 

which operate based on different principles than those of Turing machines. 

Like many late 20th century developments in theoretical physics, the idea of 

constructing a computer explicitly based on the principles of quantum 

mechanics was first put forward by Richard Feynman in 1982. Then, as 

now, it becomes progressively harder to model quantum systems with a 

conventional computer due to the problem of exponential increases in 

processing power needed as the size of the system being modeled 

increased. What he proposed was that computer hardware be built to 

explicitly take advantage of quantum mechanical phenomena. In this way, 

the computer’s computational power would directly scale with the 

complexity of the system under investigation. Then, in 1985, David Deutsch 



wrote his famous paper in which he identified the basic principles of 

quantum computation. In analogy to Turing machine, he introduced the 

concept of a universal quantum computer, and he demonstrated that in 

principle it could solve problems that could not be efficiently solved with a 

classical computer. [Fig. 5] 
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The underlying physics of conventional computers are electromagnetic 

and so of course have always been, implicitly, quantum mechanical. Yet the 

way in which data is encoded—as “bits”, “on and off”, and in a 

deterministic fashion—is about as classical as it gets. What is conceptually 

novel about quantum computation was Deutsch’s idea to encode 

information itself as a quantum states—as a superposition of eigenstates—

for which there is no classical analogue. In so doing, an exponential 

increase in computing power is obtained as the system gets larger. In 1985, 

in fact, it would be fair to describe the idea as revolutionary, and in the 

years following Deutsch’s landmark paper, discourse on the subject was 

limited mainly to theoreticians working to understand the basic principles 

and prospective advantages to be gained from quantum computing over 

conventional computing. Some such efforts were directed toward finding 

specific examples that would explicitly demonstrate the ability of quantum 

computers to outperform classical ones. Others sought to design 

experiments to prove the principles and establish the plausibility of 

quantum computing as a material reality. [Fig. 6] 
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A major breakthrough came in 1994 when Peter Shor devised the 

algorithm which now bears his name. In examining the application of 

quantum computing to the problem of determining the prime factors of 

large numbers, Shor demonstrated with his algorithm that it was in fact 

possible for a quantum computer to determine these factors in polynomial 

time rather than exponential time, reducing the factorization problem from 

the NP complexity class to the P complexity class! Since then, other 

instances have been identified of quantum computers possessing a clear 



computational advantage over the best classical computers. In this spirit, 

we examine in some greater detail another prominent example, known as 

Grover’s Algorithm. [Fig. 7] 
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In 1996, Lov Grover devised the quantum algorithm which now bears 

his name in order answer to the question of how to efficiently search a 

database. It is this quantum search algorithm which is the particular 

subject of our discussion here today. As an exhaustive description of 

Grover’s algorithm is rather complicated and beyond the scope of the 

present discussion, we aim to provide a somewhat simplified description 

which achieves the goal of conveying a good intuitive sense of its 

advantages. In essence, the algorithm describes a process for finding a 

single object of interest in an otherwise unorganized collection of objects. 
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Grover’s Algorithm is a way of performing an exhaustive search for an 

object with a given property—for simplicity, let us suppose it is a particular 

number. We know whether the number we find is the one we want or not, 

and we have our algorithm, F, that delivers an output +1 or -1, where -1 

means that we have found our desired number, and +1 if we have not. We 

denote our desired value t, the unique value for which F(t) = -1. We 

consider a case where there are N possible values that have to be searched 

through for this t, and suppose for the sake of illustration that N = 2L for 

some integer L, so that we may encode each possible value uniquely in a 

register of L-qubits. A qubit is just the quantum computation analogue of a 

classical bit—in fact, in qubits, by convention the qubit +1 corresponds to 0 

in binary, and the qubit -1 corresponds to 1 in binary. Hence, why F(t) = -1 

for our desired t, and F(x) = 1 for all other N-1 values.  
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By convention, we represent our algorithm, our function F, by a so-

called “Oracle”—which is just an abstraction of some computer operating 

coherently on however many qubits that we can give it as input. So in our 



case, the Oracle computes F on an L-qubit input, and gives us a 1-bit 

output—namely, whether the input is the value we are looking for or not. 

For inputs x and y, where x can take one of 2L values, and y can take one of 

two values, ±1, it gives an output x, and y·F(x). So the Oracle as a whole 

operates on L+1 qubits. So whether classically or quantum computationally, 

the question is how many evaluations of F, how many iterations of the 

Oracle, must we perform to find the unique value t so that F(t) = -1? 

Clasically, we may need to invoke it as many as N-1 times. Using quantum 

computation, we will show that we can do a great deal better. 
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Grover’s algorithm consists of three subroutines. The first subroutine 

involves the use of what is called a Hadamard gate, the particulars of which 

we need not delve in to for our present purpose. We apply this Hadamard 

gate to each of L-qubits, and denote it H in our diagram. The algorithm 

begins with all L of the qubits in their blank initial state, where they all 

have value +1, which we denote with the zero-ket-- a state of L-qubits, all in 

state +1. The effect of H on the zero-ket is to produce the L factors in the 

tensor product, which we identify as μ. In the simplest terms, what the 

Hadamard transformation does is place the zero-ket into the equal 

superposition state. The Hadamard gate is its own inverse, and so H|μ> = 0.  

If we expand μ, we see that it consists of a superposition of states with all N 

2L possible sequences of plus and minus values, representing the 2L 

possible values of x. Hence, if |x> is any basis state, then the usual 

orthonormality means the scalar product of x with μ is 
1

√𝑁
.  
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The next subroutine involves the oracle with its L-qubits to hold the 

argument of F, and its one auxiliary qubit. We denote this “marking” 

subroutine, M. It begins with the auxiliary bit being put through a not-gate 

and then a Hadamard gate, in order to prepare it in the state shown. With 

that as the input for the auxiliary qubit, the effect of the Oracle on |x> is 



that |x> is unchanged, with the overall effect being that of just multiplying 

the overall state by F(x). That means that the auxiliary qubit is left 

unchanged. M could run repeatedly just recycling the same auxiliary qubit, 

which never changes. So the first L-qubits evolve autonomously, 

undergoing coherent evolution during the process M, and the effect of M is 

that of a unitary matrix acting on the state of those L qubits alone. Overall, 

the effect of M on the L-qubits holding |x> is M|x> = F(x)|x>. For all but one 

value of x, F(x) = 1; only F(t) = -1, and this is why we refer to this as the 

marking operation. It marks the target term in the superposition by 

changing its sign. And we can simply write M|μ> compactly as shown. 
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The third subroutine, B, just marks everything but the zero-ket. This 

means that for whatever basis inputs, the auxiliary qubit is flipped unless 

the first L inputs are all +1. The effect of B on the blank state 0 produces 0, 

and B on any other state |x> produces -|x>.  
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Together these subroutines comprise Grover’s algorithm—each of them 

are operations on L-qubits: The operation H transforms the zero-ket to the 

superposition μ and vice-versa; M marks the target state, and B marks all 

basis states except the zero-ket. Grover’s algorithm then consists of 

starting with a blank initial state, perform H, which makes the state μ, then 

continues some number of iterations of the sequence MHBH. The net effect 

of such an iteration is called the Grover iteration, and is denoted by the 

unitary matrix HBHM. That is how the algorithm works—but what does it 

do? 
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 There’s a beautiful geometric interpretation of what it’s doing. We 

imagine a two dimensional plane containing both the target state |t> and 

the superposition |μ>. For large N, t and μ are very nearly orthogonal, but 

though not exactly-- their scalar product is 
1

√𝑁
. We define a state that is 



orthogonal to t, denoted φ, and consider a family of states lying in this 

plane. Any such state may be parameterized according to cos(θ)|φ> + 

sin(θ)|t>, for some θ∊ℝ. The target state t is, of course, in this family for θ = 
𝜋

2
. Prior to our very first Grover iteration, we are in state |μ>, which his also 

in this form, but with θ = arcsin(
1

√𝑁
). 
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For a general state of this form, what is the effect of a Grover iteration? 

The Grover iteration begins with M, which changes the sine of the 

coefficient of the target ket |t> , and leaves all other basis states unchanged. 

So the effect of M on a general state is merely a reflection about the 

horizontal axis.  
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After M, we apply HBH. Looking directly at what HBH’s effect is, it has 

no effect on the state |μ>, but it changes the sign of any state perpendicular 

to |μ>. On an arbitrary state, the effect then is to reflect it in the line |μ>.  

Slide 19: 

Cumulatively, these two reflections are equivalent to a single rotation. 

In fact, a rotation through an angle 2· arcsin(
1

√𝑁
), towards t, and each 

successive iteration rotates the state a little closer to t. Too many iterations, 

we pass t. Hence, we must choose the right number of iterations, which is 

clearly 
𝜋

2

2∙arcsin⁡(
1

√𝑁
)
 . Since the number of iterations is of course an integer 

value, the appropriate number of iterations which brings us closest is just 

Floor(
𝜋

2

2∙arcsin⁡(
1

√𝑁
)
). Which, for large N, is proportional to √𝑁. So Grover’s 

algorithm completes its search using about √𝑁 iterations, compared to the 

order N iterations for a classical search. 
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In fact, it has been proven that the algorithm is optimal. No algorithm, 

quantum or classical, and perform an exhaustive algorithmic search faster 

than Grover’s. Though the proof of this applies to an idealization, as is 

usually the case in such proofs, it remains of course an essential 

fundamental result demonstrating the potential benefits quantum 

computing can offer in solutions to exhaustive searches. In fact, for cases 

where there are M “acceptable” objects in the collection being searched, 

Grover’s algorithm completes its search in order⁡√𝑁/√𝑀 iterations, 

compared to the classic N/M order. In concluding, it is worth pointing out 

that, in general, the algorithm does not produce t exactly after the 

appropriate number of iterations. However in practice, a winnowing 

process is undertaken in tandem with classical computers—the quantum 

algorithms probabilistically reduce the collection of objects to be searched 

to a size which can then be deterministically searched by a classical 

algorithm. This basic cooperation is the power of quantum search 

algorithms—to “do the heavy lifting”, and reduce problems utterly 

intractable for a classical computer to one which they can handle. Quantum 

computing is still very much in its infancy, and it will be exciting to see the 

potential it develops over the coming years.  


