
Slide 1:

Quantum computation is the study of the information processing tasks

which may be accomplished using quantum mechanical systems. At the

heart of inquiries to ascertain the potential of quantum computation is the

question of whether it is possible for a quantum computer to efficiently

solve computational problems which have no efficient solution on a

classical computer. Pioneering work done by David Deutsch, Peter Shor,

Lov Grover and others in the 1980s and 1990s established a great deal of

the essential theoretical framework and results which provided answers to

this question which has justified continued research and interest in

quantum computing ever since. Today we will provide a brief historical

and functional overview of the development of quantum computing and its

applications during this time, and contrast it with classical computing, and

in particular, we will examine Grover’s algorithm as an illustrative example

of the potential benefits of quantum search algorithms.

Slide 2:

Computer technology today is based on the silicon microchip. First

introduced in the 1960s, it is the font from which which countless

electronic and technological innovations have sprung ever since. In 1965,

Gordon Moore, co-founder of Intel, first articulated his now famous law,

which predicted that the number of transistors on a chip would double

about every 2 years, for at least the subsequent 10 years. In fact, that

exponential growth has so far held effectively until the present. (Slide Fig.

1)

Slide 3:

There are, however, reasons acknowledged by Moore himself, why the

law must eventually begin to fail. So far, improvements in microchip

technology have paralleled improvements made in the fabrication methods,

and it in this way that we have been able to produce transistors of ever

decreasing size. Current commercially available transistors are as small as

5 nm. Maintaining this trend has become more and more difficult, owing to

production costs, as well as to much more fundamental physical

constraints. (Slide Fig. 2)

Slide 4:

As transistor sizes decrease, the more serious problem of quantum

effects begin to manifest as the size of the transistors become comparable

to the de Broglie wavelength of the electrons which carry the signals. At

these scales, the classical electromagnetic principles that govern circuit

design, such as Ohm’s law, no longer hold. Although the development of

semiconductor nanostructures and quantum transport theory has made

effective and extremely fascinating contributions to prolonging the natural

life of Moore’s Law, inevitably it must fail when the size of transistors

become comparable to the size of the individual atoms. To quote Moore

himself, “In terms of size of transistors you can see that we're approaching

the size of atoms which is a fundamental barrier, but it'll be two or three

generations before we get that far—but that's as far out as we've ever been

able to see. We have another 10 to 20 years before we reach a fundamental

limit. By then they'll be able to make bigger chips and have transistor

budgets in the billions.” [Techworld Magazine, April 13, 2010] (Slide Fig. 3)

These fundamental limits on how much computational power that can be

increased through improvements to existing technologies in turn impose

limits on the scale of the computational problems that can be tackled, as

they are ultimately limited by the computer processing power that is

available.

Slide 5:

The complexity of problems, or tasks, are classified according to the

asymptotic behavior of solutions. That is, in terms of lower bounds on the

number of iterations of a process required to obtain a solution. If the

number of computer operations increases as a polynomial power of the

size n, then the problem is said to belong to the polynomial complexity

class, or class P. If the number of operations increases faster than a

polynomial function, then the problem is said to belong to the non-

polynomial complexity class, NP. For instance, problems in the P class are

generally tractable for conventional computers; historically, when such

problems have been too hard to solve, in time their solution became

practical due to exponential increases in processing power. NP class,

however, are a different matter. For such problems, the general issue is

that a small increase in the size of the problem leads to a very large

increase in the amount of computing power required to solve it. A classic

example of an NP problem is the factorization of large numbers. For a given

integer n, the number of operations required to find its prime factors

increases exponentially as n increases. From a computational perspective,

the required computational time exponentially increases by increasing n—

hence the difficulty that computer scientists face when dealing with

problems in the NP class. Such problems are often impractical, even with

the use of the most powerful conventional computers. And it was against

the background of such problems that the idea of quantum computation

was conceived. [Fig. 4]

 Slide 6:

Conventional computers which run according to classical principles.

Mathematically speaking, according to the operations of universal Church–

Turing machine. The birth of quantum computation came from the

realization that it might be possible to construct other types of computers

which operate based on different principles than those of Turing machines.

Like many late 20th century developments in theoretical physics, the idea of

constructing a computer explicitly based on the principles of quantum

mechanics was first put forward by Richard Feynman in 1982. Then, as

now, it becomes progressively harder to model quantum systems with a

conventional computer due to the problem of exponential increases in

processing power needed as the size of the system being modeled

increased. What he proposed was that computer hardware be built to

explicitly take advantage of quantum mechanical phenomena. In this way,

the computer’s computational power would directly scale with the

complexity of the system under investigation. Then, in 1985, David Deutsch

wrote his famous paper in which he identified the basic principles of

quantum computation. In analogy to Turing machine, he introduced the

concept of a universal quantum computer, and he demonstrated that in

principle it could solve problems that could not be efficiently solved with a

classical computer. [Fig. 5]

Slide 7:

The underlying physics of conventional computers are electromagnetic

and so of course have always been, implicitly, quantum mechanical. Yet the

way in which data is encoded—as “bits”, “on and off”, and in a

deterministic fashion—is about as classical as it gets. What is conceptually

novel about quantum computation was Deutsch’s idea to encode

information itself as a quantum states—as a superposition of eigenstates—

for which there is no classical analogue. In so doing, an exponential

increase in computing power is obtained as the system gets larger. In 1985,

in fact, it would be fair to describe the idea as revolutionary, and in the

years following Deutsch’s landmark paper, discourse on the subject was

limited mainly to theoreticians working to understand the basic principles

and prospective advantages to be gained from quantum computing over

conventional computing. Some such efforts were directed toward finding

specific examples that would explicitly demonstrate the ability of quantum

computers to outperform classical ones. Others sought to design

experiments to prove the principles and establish the plausibility of

quantum computing as a material reality. [Fig. 6]

Slide 8:

A major breakthrough came in 1994 when Peter Shor devised the

algorithm which now bears his name. In examining the application of

quantum computing to the problem of determining the prime factors of

large numbers, Shor demonstrated with his algorithm that it was in fact

possible for a quantum computer to determine these factors in polynomial

time rather than exponential time, reducing the factorization problem from

the NP complexity class to the P complexity class! Since then, other

instances have been identified of quantum computers possessing a clear

computational advantage over the best classical computers. In this spirit,

we examine in some greater detail another prominent example, known as

Grover’s Algorithm. [Fig. 7]

Slide 9:

In 1996, Lov Grover devised the quantum algorithm which now bears

his name in order answer to the question of how to efficiently search a

database. It is this quantum search algorithm which is the particular

subject of our discussion here today. As an exhaustive description of

Grover’s algorithm is rather complicated and beyond the scope of the

present discussion, we aim to provide a somewhat simplified description

which achieves the goal of conveying a good intuitive sense of its

advantages. In essence, the algorithm describes a process for finding a

single object of interest in an otherwise unorganized collection of objects.

Slide 10:

Grover’s Algorithm is a way of performing an exhaustive search for an

object with a given property—for simplicity, let us suppose it is a particular

number. We know whether the number we find is the one we want or not,

and we have our algorithm, F, that delivers an output +1 or -1, where -1

means that we have found our desired number, and +1 if we have not. We

denote our desired value t, the unique value for which F(t) = -1. We

consider a case where there are N possible values that have to be searched

through for this t, and suppose for the sake of illustration that N = 2L for

some integer L, so that we may encode each possible value uniquely in a

register of L-qubits. A qubit is just the quantum computation analogue of a

classical bit—in fact, in qubits, by convention the qubit +1 corresponds to 0

in binary, and the qubit -1 corresponds to 1 in binary. Hence, why F(t) = -1

for our desired t, and F(x) = 1 for all other N-1 values.

Slide 11:

By convention, we represent our algorithm, our function F, by a so-

called “Oracle”—which is just an abstraction of some computer operating

coherently on however many qubits that we can give it as input. So in our

case, the Oracle computes F on an L-qubit input, and gives us a 1-bit

output—namely, whether the input is the value we are looking for or not.

For inputs x and y, where x can take one of 2L values, and y can take one of

two values, ±1, it gives an output x, and y·F(x). So the Oracle as a whole

operates on L+1 qubits. So whether classically or quantum computationally,

the question is how many evaluations of F, how many iterations of the

Oracle, must we perform to find the unique value t so that F(t) = -1?

Clasically, we may need to invoke it as many as N-1 times. Using quantum

computation, we will show that we can do a great deal better.

Slide 12:

Grover’s algorithm consists of three subroutines. The first subroutine

involves the use of what is called a Hadamard gate, the particulars of which

we need not delve in to for our present purpose. We apply this Hadamard

gate to each of L-qubits, and denote it H in our diagram. The algorithm

begins with all L of the qubits in their blank initial state, where they all

have value +1, which we denote with the zero-ket-- a state of L-qubits, all in

state +1. The effect of H on the zero-ket is to produce the L factors in the

tensor product, which we identify as μ. In the simplest terms, what the

Hadamard transformation does is place the zero-ket into the equal

superposition state. The Hadamard gate is its own inverse, and so H|μ> = 0.

If we expand μ, we see that it consists of a superposition of states with all N

2L possible sequences of plus and minus values, representing the 2L

possible values of x. Hence, if |x> is any basis state, then the usual

orthonormality means the scalar product of x with μ is
1

√𝑁
.

Slide 13:

The next subroutine involves the oracle with its L-qubits to hold the

argument of F, and its one auxiliary qubit. We denote this “marking”

subroutine, M. It begins with the auxiliary bit being put through a not-gate

and then a Hadamard gate, in order to prepare it in the state shown. With

that as the input for the auxiliary qubit, the effect of the Oracle on |x> is

that |x> is unchanged, with the overall effect being that of just multiplying

the overall state by F(x). That means that the auxiliary qubit is left

unchanged. M could run repeatedly just recycling the same auxiliary qubit,

which never changes. So the first L-qubits evolve autonomously,

undergoing coherent evolution during the process M, and the effect of M is

that of a unitary matrix acting on the state of those L qubits alone. Overall,

the effect of M on the L-qubits holding |x> is M|x> = F(x)|x>. For all but one

value of x, F(x) = 1; only F(t) = -1, and this is why we refer to this as the

marking operation. It marks the target term in the superposition by

changing its sign. And we can simply write M|μ> compactly as shown.

Slide 14:

The third subroutine, B, just marks everything but the zero-ket. This

means that for whatever basis inputs, the auxiliary qubit is flipped unless

the first L inputs are all +1. The effect of B on the blank state 0 produces 0,

and B on any other state |x> produces -|x>.

Slide 15:

Together these subroutines comprise Grover’s algorithm—each of them

are operations on L-qubits: The operation H transforms the zero-ket to the

superposition μ and vice-versa; M marks the target state, and B marks all

basis states except the zero-ket. Grover’s algorithm then consists of

starting with a blank initial state, perform H, which makes the state μ, then

continues some number of iterations of the sequence MHBH. The net effect

of such an iteration is called the Grover iteration, and is denoted by the

unitary matrix HBHM. That is how the algorithm works—but what does it

do?

Slide 16:

 There’s a beautiful geometric interpretation of what it’s doing. We

imagine a two dimensional plane containing both the target state |t> and

the superposition |μ>. For large N, t and μ are very nearly orthogonal, but

though not exactly-- their scalar product is
1

√𝑁
. We define a state that is

orthogonal to t, denoted φ, and consider a family of states lying in this

plane. Any such state may be parameterized according to cos(θ)|φ> +

sin(θ)|t>, for some θ∊ℝ. The target state t is, of course, in this family for θ =
𝜋

2
. Prior to our very first Grover iteration, we are in state |μ>, which his also

in this form, but with θ = arcsin(
1

√𝑁
).

Slide 17:

For a general state of this form, what is the effect of a Grover iteration?

The Grover iteration begins with M, which changes the sine of the

coefficient of the target ket |t> , and leaves all other basis states unchanged.

So the effect of M on a general state is merely a reflection about the

horizontal axis.

Slide 18:

After M, we apply HBH. Looking directly at what HBH’s effect is, it has

no effect on the state |μ>, but it changes the sign of any state perpendicular

to |μ>. On an arbitrary state, the effect then is to reflect it in the line |μ>.

Slide 19:

Cumulatively, these two reflections are equivalent to a single rotation.

In fact, a rotation through an angle 2· arcsin(
1

√𝑁
), towards t, and each

successive iteration rotates the state a little closer to t. Too many iterations,

we pass t. Hence, we must choose the right number of iterations, which is

clearly
𝜋

2

2∙arcsin⁡(
1

√𝑁
)
 . Since the number of iterations is of course an integer

value, the appropriate number of iterations which brings us closest is just

Floor(
𝜋

2

2∙arcsin⁡(
1

√𝑁
)
). Which, for large N, is proportional to √𝑁. So Grover’s

algorithm completes its search using about √𝑁 iterations, compared to the

order N iterations for a classical search.

Slide 20:

In fact, it has been proven that the algorithm is optimal. No algorithm,

quantum or classical, and perform an exhaustive algorithmic search faster

than Grover’s. Though the proof of this applies to an idealization, as is

usually the case in such proofs, it remains of course an essential

fundamental result demonstrating the potential benefits quantum

computing can offer in solutions to exhaustive searches. In fact, for cases

where there are M “acceptable” objects in the collection being searched,

Grover’s algorithm completes its search in order⁡√𝑁/√𝑀 iterations,

compared to the classic N/M order. In concluding, it is worth pointing out

that, in general, the algorithm does not produce t exactly after the

appropriate number of iterations. However in practice, a winnowing

process is undertaken in tandem with classical computers—the quantum

algorithms probabilistically reduce the collection of objects to be searched

to a size which can then be deterministically searched by a classical

algorithm. This basic cooperation is the power of quantum search

algorithms—to “do the heavy lifting”, and reduce problems utterly

intractable for a classical computer to one which they can handle. Quantum

computing is still very much in its infancy, and it will be exciting to see the

potential it develops over the coming years.

